From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
79.53 % |
78.79 % |
80.94 % |
82.54 % |
86.33 % |
84.21 % |
88.77 % |
87.15 % |
PEDESTRIAN |
52.71 % |
53.55 % |
52.19 % |
58.86 % |
70.17 % |
59.49 % |
64.99 % |
77.70 % |
Benchmark |
TP |
FP |
FN |
CAR |
32298 |
2094 |
583 |
PEDESTRIAN |
17756 |
5394 |
1660 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
91.61 % |
85.79 % |
92.22 % |
210 |
78.26 % |
PEDESTRIAN |
68.40 % |
73.61 % |
69.53 % |
262 |
48.16 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
86.31 % |
11.23 % |
2.46 % |
158 |
PEDESTRIAN |
51.55 % |
34.71 % |
13.75 % |
738 |
Benchmark |
# Dets |
# Tracks |
CAR |
32881 |
713 |
PEDESTRIAN |
19416 |
331 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.