From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
59.08 % |
61.27 % |
57.45 % |
65.14 % |
79.29 % |
60.25 % |
83.46 % |
82.63 % |
PEDESTRIAN |
34.76 % |
33.96 % |
35.81 % |
37.64 % |
62.76 % |
39.23 % |
66.66 % |
75.36 % |
Benchmark |
TP |
FP |
FN |
CAR |
27099 |
7293 |
1156 |
PEDESTRIAN |
11606 |
11544 |
2279 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
74.66 % |
80.39 % |
75.43 % |
266 |
59.21 % |
PEDESTRIAN |
38.60 % |
70.85 % |
40.29 % |
391 |
23.99 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
50.77 % |
34.92 % |
14.31 % |
254 |
PEDESTRIAN |
21.65 % |
35.74 % |
42.61 % |
689 |
Benchmark |
# Dets |
# Tracks |
CAR |
28255 |
835 |
PEDESTRIAN |
13885 |
462 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.