From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
72.77 % |
74.09 % |
72.19 % |
78.13 % |
85.48 % |
74.87 % |
89.21 % |
87.16 % |
PEDESTRIAN |
41.08 % |
44.01 % |
38.82 % |
48.96 % |
67.19 % |
42.09 % |
72.44 % |
77.38 % |
Benchmark |
TP |
FP |
FN |
CAR |
30599 |
3793 |
836 |
PEDESTRIAN |
14786 |
8364 |
2084 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
85.94 % |
85.78 % |
86.54 % |
206 |
73.29 % |
PEDESTRIAN |
51.77 % |
73.13 % |
54.87 % |
717 |
34.61 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
75.23 % |
21.85 % |
2.92 % |
525 |
PEDESTRIAN |
32.65 % |
48.11 % |
19.24 % |
1194 |
Benchmark |
# Dets |
# Tracks |
CAR |
31435 |
1098 |
PEDESTRIAN |
16870 |
1147 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.