From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
77.58 % |
76.97 % |
78.84 % |
80.25 % |
86.43 % |
81.90 % |
88.35 % |
86.95 % |
PEDESTRIAN |
52.44 % |
50.83 % |
54.35 % |
55.26 % |
72.37 % |
59.45 % |
72.89 % |
79.15 % |
Benchmark |
TP |
FP |
FN |
CAR |
31578 |
2814 |
355 |
PEDESTRIAN |
16518 |
6632 |
1160 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
89.68 % |
85.50 % |
90.79 % |
381 |
76.36 % |
PEDESTRIAN |
64.95 % |
75.28 % |
66.34 % |
322 |
47.31 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
81.39 % |
15.54 % |
3.08 % |
335 |
PEDESTRIAN |
42.61 % |
39.17 % |
18.21 % |
684 |
Benchmark |
# Dets |
# Tracks |
CAR |
31933 |
773 |
PEDESTRIAN |
17678 |
380 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.