From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
75.16 % |
73.94 % |
76.95 % |
80.81 % |
82.40 % |
80.00 % |
89.27 % |
87.12 % |
PEDESTRIAN |
43.59 % |
39.88 % |
48.12 % |
44.90 % |
57.40 % |
51.95 % |
65.22 % |
71.34 % |
Benchmark |
TP |
FP |
FN |
CAR |
31724 |
2668 |
2003 |
PEDESTRIAN |
14628 |
8522 |
3481 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
85.08 % |
85.63 % |
86.42 % |
462 |
71.82 % |
PEDESTRIAN |
46.98 % |
64.59 % |
48.15 % |
270 |
24.61 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
80.92 % |
16.61 % |
2.46 % |
599 |
PEDESTRIAN |
29.90 % |
51.20 % |
18.90 % |
1554 |
Benchmark |
# Dets |
# Tracks |
CAR |
33727 |
1205 |
PEDESTRIAN |
18109 |
1009 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.