Method

DLKF [KFDL]
[Anonymous Submission]

Submitted on 12 Aug. 2024 23:26 by
[Anonymous Submission]

Running time:0.11 s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
VirConv Detection
Parameters:
-
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
CAR 81.06 % 78.08 % 84.78 % 82.13 % 86.64 % 88.33 % 90.47 % 87.89 %

Benchmark TP FP FN
CAR 31837 2555 764

Benchmark MOTA MOTP MODA IDSW sMOTA
CAR 90.29 % 86.64 % 90.35 % 22 77.92 %

Benchmark MT rate PT rate ML rate FRAG
CAR 86.15 % 5.54 % 8.31 % 117

Benchmark # Dets # Tracks
CAR 32601 635

This table as LaTeX


This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker