Method

HybridTrack: A Hybrid Approach for Robust Multi-Object Tracking [HybridTrack]
[Anonymous Submission]

Submitted on 4 Dec. 2024 13:44 by
[Anonymous Submission]

Running time:0.01 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
Tracking-by-detection paradigm.
Parameters:
Virconv detections
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
CAR 82.08 % 78.80 % 86.10 % 82.33 % 87.39 % 89.13 % 91.19 % 88.02 %
PEDESTRIAN 39.50 % 32.30 % 48.52 % 34.03 % 61.62 % 52.68 % 63.03 % 71.01 %

Benchmark TP FP FN
CAR 31865 2527 534
PEDESTRIAN 11013 12137 1772

Benchmark MOTA MOTP MODA IDSW sMOTA
CAR 91.05 % 86.79 % 91.10 % 17 78.81 %
PEDESTRIAN 39.45 % 64.44 % 39.92 % 108 22.54 %

Benchmark MT rate PT rate ML rate FRAG
CAR 85.39 % 6.31 % 8.31 % 94
PEDESTRIAN 21.99 % 29.21 % 48.80 % 840

Benchmark # Dets # Tracks
CAR 32399 637
PEDESTRIAN 12785 259

This table as LaTeX


This figure as: png pdf

This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker