Method

SegStereo: Exploiting Semantic Information for Disparity Estimation [SegStereo]
https://github.com/yangguorun/SegStereo

Submitted on 25 May. 2018 13:05 by
Yang Guorun (Tsinghua University)

Running time:0.6 s
Environment:Nvidia GTX Titan Xp

Method Description:
Arxiv Link: https://arxiv.org/abs/1807.11699
CVF Link:
http://openaccess.thecvf.com/content_ECCV_2018/html
/Guorun_Yang_SegStereo_Exploiting_Semantic_ECCV_201
8_paper.html
Parameters:
None
Latex Bibtex:
@inproceedings{yang2018SegStereo,
author = {Yang, Guorun and
Zhao, Hengshuang and
Shi, Jianping and
Deng, Zhidong and
Jia, Jiaya},
title = {SegStereo: Exploiting Semantic
Information for Disparity Estimation},
booktitle = ECCV,
year = {2018}
}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, we display the original image, the color-coded result and an error image. The error image contains 4 colors:
red: the pixel has the wrong label and the wrong category
yellow: the pixel has the wrong label but the correct category
green: the pixel has the correct label
black: the groundtruth label is not used for evaluation

Test Set Average

IoU class iIoU class IoU category iIoU category
59.10 28.00 81.31 60.26
This table as LaTeX

Test Image 0

Input Image

Prediction

Error


Test Image 1

Input Image

Prediction

Error


Test Image 2

Input Image

Prediction

Error


Test Image 3

Input Image

Prediction

Error


Test Image 4

Input Image

Prediction

Error


Test Image 5

Input Image

Prediction

Error


Test Image 6

Input Image

Prediction

Error


Test Image 7

Input Image

Prediction

Error


Test Image 8

Input Image

Prediction

Error


Test Image 9

Input Image

Prediction

Error




eXTReMe Tracker