Method

ADStereo [ADStereo]
[Anonymous Submission]

Submitted on 2 Oct. 2024 12:27 by
[Anonymous Submission]

Running time:0.05 s
Environment:1 core @ 2.5 Ghz (Python)

Method Description:
However, current solutions often suffer
from limitations such as the loss of
discriminative features caused by downsampling
operations that treat all pixels equally, and
spatial misalignment resulting from repeated
downsampling and
upsampling. To overcome these challenges, this
paper presents two sampling strategies: the
Adaptive Downsampling Module (ADM) and the
Disparity Alignment Module (DAM), to prioritize
real-time inference while ensuring accuracy. The
ADM leverages
local features to learn adaptive weights, enabling
more effective downsampling while preserving
crucial structure information. On the other hand,
the DAM employs a learnable interpolation strategy
to predict transformation offsets of pixels,
thereby mitigating the spatial misalignment issue.
Building upon these modules, we introduce
ADStereo, a real-time yet accurate network that
achieves highly competitive performance on
multiple public benchmarks.
Parameters:
9.16M
Latex Bibtex:

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

Error D1-bg D1-fg D1-all
All / All 1.59 2.94 1.82
All / Est 1.59 2.94 1.82
Noc / All 1.46 2.79 1.68
Noc / Est 1.46 2.79 1.68
This table as LaTeX

Test Image 0

Error D1-bg D1-fg D1-all
All / All 1.77 3.18 1.96
All / Est 1.77 3.18 1.96
Noc / All 1.70 3.18 1.91
Noc / Est 1.70 3.18 1.91
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

Error D1-bg D1-fg D1-all
All / All 2.10 2.88 2.19
All / Est 2.10 2.88 2.19
Noc / All 2.04 2.88 2.13
Noc / Est 2.04 2.88 2.13
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

Error D1-bg D1-fg D1-all
All / All 1.97 4.26 2.08
All / Est 1.97 4.26 2.08
Noc / All 1.80 4.26 1.92
Noc / Est 1.80 4.26 1.92
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

Error D1-bg D1-fg D1-all
All / All 1.93 0.34 1.78
All / Est 1.93 0.34 1.78
Noc / All 1.86 0.34 1.72
Noc / Est 1.86 0.34 1.72
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

Error D1-bg D1-fg D1-all
All / All 0.68 0.22 0.60
All / Est 0.68 0.22 0.60
Noc / All 0.67 0.22 0.59
Noc / Est 0.67 0.22 0.59
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

Error D1-bg D1-fg D1-all
All / All 2.66 4.68 2.84
All / Est 2.66 4.68 2.84
Noc / All 2.39 4.68 2.60
Noc / Est 2.39 4.68 2.60
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

Error D1-bg D1-fg D1-all
All / All 3.34 1.73 3.17
All / Est 3.34 1.73 3.17
Noc / All 3.41 1.73 3.23
Noc / Est 3.41 1.73 3.23
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

Error D1-bg D1-fg D1-all
All / All 0.39 3.29 0.96
All / Est 0.39 3.29 0.96
Noc / All 0.40 3.29 0.97
Noc / Est 0.40 3.29 0.97
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

Error D1-bg D1-fg D1-all
All / All 0.38 1.86 0.65
All / Est 0.38 1.86 0.65
Noc / All 0.37 1.86 0.65
Noc / Est 0.37 1.86 0.65
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

Error D1-bg D1-fg D1-all
All / All 0.48 1.76 0.81
All / Est 0.48 1.76 0.81
Noc / All 0.48 1.84 0.82
Noc / Est 0.48 1.84 0.82
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

Error D1-bg D1-fg D1-all
All / All 1.58 2.84 1.87
All / Est 1.58 2.84 1.87
Noc / All 1.60 2.84 1.88
Noc / Est 1.60 2.84 1.88
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

Error D1-bg D1-fg D1-all
All / All 0.63 0.57 0.62
All / Est 0.63 0.57 0.62
Noc / All 0.63 0.57 0.62
Noc / Est 0.63 0.57 0.62
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

Error D1-bg D1-fg D1-all
All / All 0.79 1.51 0.83
All / Est 0.79 1.51 0.83
Noc / All 0.63 1.51 0.69
Noc / Est 0.63 1.51 0.69
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

Error D1-bg D1-fg D1-all
All / All 0.57 0.26 0.54
All / Est 0.57 0.26 0.54
Noc / All 0.55 0.26 0.51
Noc / Est 0.55 0.26 0.51
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

Error D1-bg D1-fg D1-all
All / All 1.36 0.34 1.34
All / Est 1.36 0.34 1.34
Noc / All 1.27 0.34 1.26
Noc / Est 1.27 0.34 1.26
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

Error D1-bg D1-fg D1-all
All / All 2.48 0.27 2.28
All / Est 2.48 0.27 2.28
Noc / All 2.53 0.27 2.32
Noc / Est 2.53 0.27 2.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

Error D1-bg D1-fg D1-all
All / All 3.24 0.12 2.78
All / Est 3.24 0.12 2.78
Noc / All 3.09 0.12 2.65
Noc / Est 3.09 0.12 2.65
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

Error D1-bg D1-fg D1-all
All / All 0.62 0.16 0.58
All / Est 0.62 0.16 0.58
Noc / All 0.63 0.16 0.58
Noc / Est 0.63 0.16 0.58
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

Error D1-bg D1-fg D1-all
All / All 4.92 1.51 3.30
All / Est 4.92 1.51 3.30
Noc / All 4.88 1.51 3.26
Noc / Est 4.88 1.51 3.26
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

Error D1-bg D1-fg D1-all
All / All 0.85 0.63 0.82
All / Est 0.85 0.63 0.82
Noc / All 0.82 0.63 0.80
Noc / Est 0.82 0.63 0.80
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker