Method

Computing the Stereo Matching Cost with a Convolutional Neural Network [MC-CNN-acrt]
https://github.com/jzbontar/mc-cnn

Submitted on 21 Aug. 2015 16:40 by
Jure Zbontar (NYU)

Running time:67 s
Environment:Nvidia GTX Titan X (CUDA, Lua/Torch7)

Method Description:
We train a convolutional neural network to predict
how well two image patches match and use it to
compute the stereo matching cost. The cost is
refined by cross-based cost aggregation and
semiglobal matching, followed by a left-right
consistency check to eliminate errors in the
occluded regions.
Parameters:
See paper
Latex Bibtex:
@article{Zbontar2016JMLR,
author = {Zbontar, Jure and LeCun, Yann},
title = {Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches},
booktitle = {Submitted to JMLR},
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

Error D1-bg D1-fg D1-all
All / All 2.89 8.88 3.89
All / Est 2.89 8.88 3.88
Noc / All 2.48 7.64 3.33
Noc / Est 2.48 7.64 3.33
This table as LaTeX

Test Image 0

Error D1-bg D1-fg D1-all
All / All 2.03 2.62 2.11
All / Est 2.03 2.62 2.11
Noc / All 1.99 2.62 2.08
Noc / Est 1.99 2.62 2.08
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

Error D1-bg D1-fg D1-all
All / All 2.90 5.06 3.14
All / Est 2.90 5.06 3.14
Noc / All 2.74 5.06 3.00
Noc / Est 2.74 5.06 3.00
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

Error D1-bg D1-fg D1-all
All / All 3.65 5.35 3.73
All / Est 3.65 5.35 3.73
Noc / All 3.06 5.35 3.17
Noc / Est 3.06 5.35 3.17
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

Error D1-bg D1-fg D1-all
All / All 3.96 6.84 4.23
All / Est 3.96 6.84 4.23
Noc / All 3.53 6.84 3.84
Noc / Est 3.53 6.84 3.84
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

Error D1-bg D1-fg D1-all
All / All 5.21 3.88 4.99
All / Est 5.21 3.88 4.99
Noc / All 4.26 3.88 4.19
Noc / Est 4.26 3.88 4.19
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

Error D1-bg D1-fg D1-all
All / All 7.43 8.12 7.49
All / Est 7.43 8.12 7.49
Noc / All 5.64 8.12 5.87
Noc / Est 5.64 8.12 5.87
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

Error D1-bg D1-fg D1-all
All / All 7.06 3.69 6.71
All / Est 7.06 3.69 6.71
Noc / All 6.45 3.69 6.16
Noc / Est 6.45 3.69 6.16
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

Error D1-bg D1-fg D1-all
All / All 1.04 5.54 1.92
All / Est 1.04 5.54 1.92
Noc / All 1.06 5.54 1.94
Noc / Est 1.06 5.54 1.94
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

Error D1-bg D1-fg D1-all
All / All 1.01 2.74 1.33
All / Est 1.01 2.74 1.33
Noc / All 1.00 2.74 1.33
Noc / Est 1.00 2.74 1.33
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

Error D1-bg D1-fg D1-all
All / All 0.96 2.62 1.39
All / Est 0.96 2.62 1.39
Noc / All 0.97 2.75 1.41
Noc / Est 0.97 2.75 1.41
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

Error D1-bg D1-fg D1-all
All / All 1.58 4.83 2.32
All / Est 1.58 4.83 2.32
Noc / All 1.60 4.83 2.34
Noc / Est 1.60 4.83 2.34
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

Error D1-bg D1-fg D1-all
All / All 1.07 0.34 0.94
All / Est 1.07 0.34 0.94
Noc / All 1.08 0.34 0.94
Noc / Est 1.08 0.34 0.94
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

Error D1-bg D1-fg D1-all
All / All 0.70 2.11 0.79
All / Est 0.70 2.11 0.79
Noc / All 0.71 2.11 0.80
Noc / Est 0.71 2.11 0.80
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

Error D1-bg D1-fg D1-all
All / All 0.72 0.46 0.69
All / Est 0.72 0.46 0.69
Noc / All 0.57 0.46 0.56
Noc / Est 0.57 0.46 0.56
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

Error D1-bg D1-fg D1-all
All / All 1.28 4.22 1.33
All / Est 1.28 4.22 1.33
Noc / All 1.19 4.22 1.24
Noc / Est 1.19 4.22 1.24
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

Error D1-bg D1-fg D1-all
All / All 2.94 1.56 2.81
All / Est 2.94 1.56 2.81
Noc / All 2.99 1.56 2.85
Noc / Est 2.99 1.56 2.85
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

Error D1-bg D1-fg D1-all
All / All 4.99 1.30 4.45
All / Est 4.99 1.30 4.45
Noc / All 4.43 1.30 3.97
Noc / Est 4.43 1.30 3.97
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

Error D1-bg D1-fg D1-all
All / All 1.60 0.61 1.49
All / Est 1.60 0.61 1.49
Noc / All 1.25 0.61 1.19
Noc / Est 1.25 0.61 1.19
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

Error D1-bg D1-fg D1-all
All / All 6.24 6.87 6.54
All / Est 6.24 6.87 6.54
Noc / All 5.72 6.87 6.27
Noc / Est 5.72 6.87 6.27
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

Error D1-bg D1-fg D1-all
All / All 1.23 3.60 1.50
All / Est 1.23 3.60 1.50
Noc / All 1.11 3.60 1.40
Noc / Est 1.11 3.60 1.40
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker