Method

Disparity by Simultaneous Edge Drawing [SED]
https://bitbucket.org/dexmont/edge_mapping

Submitted on 31 Aug. 2016 17:32 by
Dexmont Pena (Dublin City University)

Running time:0.68 s
Environment:1 core @ 2.0 Ghz (C/C++)

Method Description:
This work presents a new low-level real-time algorithm for simultaneous edge drawing and disparity calculation in stereo image pairs. It works by extending the principles from the ED algorithm, a fast and robust edge detector able to produce one pixel-wide chains of pixels for the edges in the image. In this paper the ED algorithm is extended to run simultaneously on both images in a stereo-pair. The disparity information is obtained by matching only a few anchor points and then propagating those disparities along the image edges. This allows the reduction of computational costs compared to other edge-based algorithms, as only a few pixels require to be matched, and avoids the problems present in other edge-point based approaches. The experiments show that this new approach is able to obtain accuracies similar to other state-of-the-art approaches but with a reduced number of computations.
Parameters:
TBD
Latex Bibtex:
@Inbook{Peña2017,
author="Pe{\~{n}}a, Dexmont
and Sutherland, Alistair",
editor="Chen, Chu-Song
and Lu, Jiwen
and Ma, Kai-Kuang",
title="Disparity Estimation by Simultaneous Edge Drawing",
bookTitle="Computer Vision -- ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II",
year="2017",
publisher="Springer International Publishing",
address="Cham",
pages="124--135",
abstract="This work presents a new low-level real-time algorithm for simultaneous edge drawing and disparity calculation in stereo image pairs. It works by extending the principles from the ED algorithm, a fast and robust edge detector able to produce one pixel-wide chains of pixels for the edges in the image. In this paper the ED algorithm is extended to run simultaneously on both images in a stereo-pair. The disparity information is obtained by matching only a few anchor points and then propagating those disparities along the image edges. This allows the reduction of computational costs compared to other edge-based algorithms, as only a few pixels require to be matched, and avoids the problems present in other edge-point based approaches. The experiments show that this new approach is able to obtain accuracies similar to other state-of-the-art approaches but with a reduced number of computations.",
isbn="978-3-319-54427-4",
doi="10.1007/978-3-319-54427-4_10",
url="https://doi.org/10.1007/978-3-319-54427-4_10"
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

Error D1-bg D1-fg D1-all
All / All 25.01 40.43 27.58
All / Est 4.90 8.29 5.74
Noc / All 24.67 39.95 27.19
Noc / Est 4.87 8.27 5.71
This table as LaTeX

Test Image 0

Error D1-bg D1-fg D1-all
All / All 17.08 39.64 20.18
All / Est 8.41 1.93 7.26
Noc / All 17.28 39.64 20.40
Noc / Est 8.41 1.93 7.26
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

Error D1-bg D1-fg D1-all
All / All 31.96 38.24 32.66
All / Est 7.04 2.91 5.96
Noc / All 31.82 38.24 32.54
Noc / Est 7.04 2.91 5.96
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

Error D1-bg D1-fg D1-all
All / All 27.32 15.57 26.75
All / Est 11.09 3.63 9.99
Noc / All 26.80 15.57 26.24
Noc / Est 10.95 3.63 9.87
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

Error D1-bg D1-fg D1-all
All / All 39.09 55.77 40.63
All / Est 9.80 13.70 10.45
Noc / All 38.77 55.77 40.36
Noc / Est 9.80 13.70 10.45
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

Error D1-bg D1-fg D1-all
All / All 27.37 30.40 27.87
All / Est 13.64 7.58 11.81
Noc / All 26.05 30.40 26.78
Noc / Est 13.64 7.58 11.81
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

Error D1-bg D1-fg D1-all
All / All 38.21 13.23 35.96
All / Est 15.36 9.05 14.12
Noc / All 37.30 13.23 35.08
Noc / Est 15.36 9.05 14.12
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

Error D1-bg D1-fg D1-all
All / All 46.27 19.87 43.49
All / Est 10.49 5.70 9.02
Noc / All 46.48 19.87 43.61
Noc / Est 10.45 5.70 8.99
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

Error D1-bg D1-fg D1-all
All / All 21.15 25.87 22.08
All / Est 3.25 10.25 5.12
Noc / All 21.15 25.87 22.09
Noc / Est 3.25 10.25 5.12
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

Error D1-bg D1-fg D1-all
All / All 20.85 13.71 19.53
All / Est 7.54 3.21 6.32
Noc / All 20.80 13.71 19.49
Noc / Est 7.54 3.21 6.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

Error D1-bg D1-fg D1-all
All / All 21.42 21.97 21.56
All / Est 8.12 2.91 6.39
Noc / All 21.24 22.86 21.65
Noc / Est 8.12 2.91 6.39
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

Error D1-bg D1-fg D1-all
All / All 14.71 24.04 16.84
All / Est 7.45 2.82 5.44
Noc / All 14.51 24.04 16.71
Noc / Est 7.41 2.82 5.42
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

Error D1-bg D1-fg D1-all
All / All 16.24 18.07 16.56
All / Est 6.68 4.91 6.07
Noc / All 16.24 18.07 16.57
Noc / Est 6.68 4.91 6.07
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

Error D1-bg D1-fg D1-all
All / All 21.04 40.35 22.34
All / Est 2.35 1.18 2.13
Noc / All 21.09 40.35 22.40
Noc / Est 2.35 1.18 2.13
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

Error D1-bg D1-fg D1-all
All / All 24.24 37.58 25.88
All / Est 2.92 2.88 2.91
Noc / All 23.85 37.58 25.55
Noc / Est 2.92 2.88 2.91
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

Error D1-bg D1-fg D1-all
All / All 23.97 23.95 23.97
All / Est 2.54 3.55 2.60
Noc / All 23.56 23.95 23.57
Noc / Est 2.54 3.55 2.60
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

Error D1-bg D1-fg D1-all
All / All 19.15 32.97 20.40
All / Est 1.08 3.19 1.45
Noc / All 19.33 32.97 20.59
Noc / Est 1.08 3.19 1.45
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

Error D1-bg D1-fg D1-all
All / All 20.60 34.49 22.65
All / Est 5.43 7.87 5.88
Noc / All 20.25 34.49 22.36
Noc / Est 5.43 7.87 5.88
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

Error D1-bg D1-fg D1-all
All / All 14.07 31.01 15.84
All / Est 3.16 1.15 2.77
Noc / All 13.78 31.01 15.61
Noc / Est 3.00 1.15 2.65
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

Error D1-bg D1-fg D1-all
All / All 33.62 50.30 41.54
All / Est 4.77 10.84 8.42
Noc / All 33.08 50.30 41.34
Noc / Est 4.77 10.84 8.42
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

Error D1-bg D1-fg D1-all
All / All 8.59 35.05 11.59
All / Est 1.75 9.84 3.54
Noc / All 8.56 35.05 11.61
Noc / Est 1.75 9.84 3.54
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker