Method

DeepFlow: Large displacement optical flow with deep matching [DMF_ROB]
http://lear.inrialpes.fr/src/deepflow/

Submitted on 26 Mar. 2018 19:49 by
Alexander Brock (HCI)

Running time:150 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
(Baseline submission for robust vision flow challenge)

Optical flow computation is a key component in many computer vision systems designed for tasks such as action detection or activity recognition. However, despite several major advances over the last decade, handling large displacement in optical flow remains an open problem. Inspired by the large displacement optical flow of Brox and Malik, our approach, termed DeepFlow, blends a matching algorithm with a variational approach for optical flow. We propose a descriptor matching algorithm, tailored to the optical flow problem, that allows to boost performance on fast motions. The matching algorithm builds upon a multi-stage architecture with 6 layers, interleaving convolutions and max-pooling, a construction akin to deep convolutional nets. Using dense sampling, it allows to efficiently retrieve quasi-dense correspondences, and enjoys a built-in smoothing effect on descriptors matches, a valuable asset for integration into an energy minimization framework for optical flow estimation. DeepFlow efficiently handles large displacements occurring in realistic videos, and shows competitive performance on optical flow benchmarks. Furthermore, it sets a new state-of-the-art on the MPI-Sintel dataset.
Parameters:
Default parameters as implemented by the authors.
Latex Bibtex:
@inproceedings{weinzaepfel:hal-00873592,
TITLE = {{DeepFlow: Large displacement optical flow with deep matching}},
AUTHOR = {Weinzaepfel, Philippe and Revaud, J{\'e}r{\^o}me and Harchaoui, Zaid and Schmid, Cordelia},
URL = {https://hal.inria.fr/hal-00873592},
BOOKTITLE = {{ICCV - IEEE International Conference on Computer Vision}},
ADDRESS = {Sydney, Australia},
PUBLISHER = {{IEEE}},
PAGES = {1385-1392},
YEAR = {2013},
MONTH = Dec,
DOI = {10.1109/ICCV.2013.175},
PDF = {https://hal.inria.fr/hal-00873592/file/DeepFlow_iccv2013.pdf},
HAL_ID = {hal-00873592},
HAL_VERSION = {v1},
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

Error Fl-bg Fl-fg Fl-all
All / All 30.74 30.07 30.63
All / Est 30.74 30.07 30.63
Noc / All 19.32 25.60 20.46
Noc / Est 19.32 25.60 20.46
This table as LaTeX

Test Image 0

Error Fl-bg Fl-fg Fl-all
All / All 15.02 62.94 21.60
All / Est 15.02 62.94 21.60
Noc / All 7.05 62.94 15.52
Noc / Est 7.05 62.94 15.52
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 1

Error Fl-bg Fl-fg Fl-all
All / All 17.11 47.77 20.53
All / Est 17.11 47.77 20.53
Noc / All 8.41 47.77 13.27
Noc / Est 8.41 47.77 13.27
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 2

Error Fl-bg Fl-fg Fl-all
All / All 27.38 12.35 26.64
All / Est 27.38 12.35 26.64
Noc / All 13.81 12.35 13.72
Noc / Est 13.81 12.35 13.72
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 3

Error Fl-bg Fl-fg Fl-all
All / All 39.32 96.48 44.60
All / Est 39.32 96.48 44.60
Noc / All 25.55 95.30 31.56
Noc / Est 25.55 95.30 31.56
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 4

Error Fl-bg Fl-fg Fl-all
All / All 40.28 48.86 41.70
All / Est 40.28 48.86 41.70
Noc / All 29.20 47.06 32.54
Noc / Est 29.20 47.06 32.54
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 5

Error Fl-bg Fl-fg Fl-all
All / All 28.94 0.00 26.33
All / Est 28.94 0.00 26.33
Noc / All 18.36 0.00 16.48
Noc / Est 18.36 0.00 16.48
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 6

Error Fl-bg Fl-fg Fl-all
All / All 29.99 1.82 27.02
All / Est 29.99 1.82 27.02
Noc / All 21.76 1.82 19.39
Noc / Est 21.76 1.82 19.39
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 7

Error Fl-bg Fl-fg Fl-all
All / All 0.60 100.00 20.05
All / Est 0.60 100.00 20.05
Noc / All 0.60 100.00 19.18
Noc / Est 0.60 100.00 19.18
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 8

Error Fl-bg Fl-fg Fl-all
All / All 0.94 99.99 19.23
All / Est 0.94 99.99 19.23
Noc / All 0.94 99.99 19.23
Noc / Est 0.94 99.99 19.23
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 9

Error Fl-bg Fl-fg Fl-all
All / All 0.91 100.00 26.22
All / Est 0.91 100.00 26.22
Noc / All 0.91 100.00 26.22
Noc / Est 0.91 100.00 26.22
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 10

Error Fl-bg Fl-fg Fl-all
All / All 23.54 27.04 24.34
All / Est 23.54 27.04 24.34
Noc / All 11.28 27.04 15.38
Noc / Est 11.28 27.04 15.38
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 11

Error Fl-bg Fl-fg Fl-all
All / All 21.73 15.60 20.63
All / Est 21.73 15.60 20.63
Noc / All 11.85 15.50 12.58
Noc / Est 11.85 15.50 12.58
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 12

Error Fl-bg Fl-fg Fl-all
All / All 29.20 13.79 28.16
All / Est 29.20 13.79 28.16
Noc / All 16.08 13.79 15.89
Noc / Est 16.08 13.79 15.89
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 13

Error Fl-bg Fl-fg Fl-all
All / All 26.46 41.80 28.34
All / Est 26.46 41.80 28.34
Noc / All 11.42 25.25 13.03
Noc / Est 11.42 25.25 13.03
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 14

Error Fl-bg Fl-fg Fl-all
All / All 29.14 16.47 28.92
All / Est 29.14 16.47 28.92
Noc / All 15.78 16.47 15.80
Noc / Est 15.78 16.47 15.80
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 15

Error Fl-bg Fl-fg Fl-all
All / All 51.20 10.61 47.53
All / Est 51.20 10.61 47.53
Noc / All 37.27 10.61 34.21
Noc / Est 37.27 10.61 34.21
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 16

Error Fl-bg Fl-fg Fl-all
All / All 44.53 53.84 45.90
All / Est 44.53 53.84 45.90
Noc / All 29.92 53.84 34.22
Noc / Est 29.92 53.84 34.22
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 17

Error Fl-bg Fl-fg Fl-all
All / All 46.62 39.13 45.84
All / Est 46.62 39.13 45.84
Noc / All 32.04 39.13 32.96
Noc / Est 32.04 39.13 32.96
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 18

Error Fl-bg Fl-fg Fl-all
All / All 45.56 100.00 71.42
All / Est 45.56 100.00 71.42
Noc / All 27.24 100.00 47.31
Noc / Est 27.24 100.00 47.31
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 19

Error Fl-bg Fl-fg Fl-all
All / All 48.33 24.29 45.61
All / Est 48.33 24.29 45.61
Noc / All 31.52 24.29 30.48
Noc / Est 31.52 24.29 30.48
This table as LaTeX

Input Image

Flow Result

Flow Error




eXTReMe Tracker