Method

Pyramidal Gradient Matching for Optical Flow Estimation [PGM-G]


Submitted on 30 Jul. 2016 10:41 by
yuanwei li (nudt)

Running time:5.05 s
Environment:1 core @ 3.1 Ghz (C/C++)

Method Description:
Initializing optical flow field by either sparse
descriptor matching or dense patch matches has been
proved to be particularly useful for capturing large
displacements. In this paper, we present a pyramidal
gradient matching approach that can provide dense
matches for highly accurate and efficient optical
flow estimation. A novel contribution of our method
is that image gradient is used to describe image
patches and proved to be able to produce robust
matching. Therefore, our method is more efficient
than methods that adopt special features (like SIFT)
or patch distance metric. Moreover, we find that
image gradient is scalable for optical flow
estimation, which means we can use different levels
of gradient feature (for example, full gradients or
only direction information of gradients) to obtain
different complexity without dramatic changes in
accuracy. Another contribution is that we uncover
the secrets of limited PatchMatch through a thorough
analysis and design a pyramidal matching framework
based these secrets. Our pyramidal matching
framework is aimed at robust gradient matching and
effective to grow inliers and reject outliers. In
this framework, we present some special enhancements
for outlier filtering in gradient matching. By
initializing EpicFlow with our matches, experimental
results show that our method is efficient and robust
(ranking 1st on both clean pass and final pass of
MPI Sintel dataset among published methods).
Parameters:
...
Latex Bibtex:
@article{DBLP:journals/corr/Li17n,
author = {Yuanwei Li},
title = {Pyramidal Gradient Matching for
Optical Flow Estimation},
journal = {CoRR},
volume = {abs/1704.03217},
year = {2017},
url = {http://arxiv.org/abs/1704.03217},
archivePrefix = {arXiv},
eprint = {1704.03217},
timestamp = {Wed, 07 Jun 2017 14:40:02 +0200},
biburl =
{http://dblp.org/rec/bib/journals/corr/Li17n},
bibsource = {dblp computer science bibliography,
http://dblp.org}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

Error Fl-bg Fl-fg Fl-all
All / All 18.90 23.43 19.66
All / Est 18.90 23.43 19.66
Noc / All 9.24 19.06 11.02
Noc / Est 9.24 19.06 11.02
This table as LaTeX

Test Image 0

Error Fl-bg Fl-fg Fl-all
All / All 10.40 24.31 12.31
All / Est 10.40 24.31 12.31
Noc / All 6.76 24.31 9.42
Noc / Est 6.76 24.31 9.42
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 1

Error Fl-bg Fl-fg Fl-all
All / All 7.85 36.40 11.04
All / Est 7.85 36.40 11.04
Noc / All 3.50 36.40 7.56
Noc / Est 3.50 36.40 7.56
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 2

Error Fl-bg Fl-fg Fl-all
All / All 15.77 8.12 15.39
All / Est 15.77 8.12 15.39
Noc / All 6.38 8.12 6.48
Noc / Est 6.38 8.12 6.48
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 3

Error Fl-bg Fl-fg Fl-all
All / All 21.12 78.57 26.43
All / Est 21.12 78.57 26.43
Noc / All 9.68 71.39 15.00
Noc / Est 9.68 71.39 15.00
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 4

Error Fl-bg Fl-fg Fl-all
All / All 29.19 30.88 29.47
All / Est 29.19 30.88 29.47
Noc / All 18.58 30.10 20.74
Noc / Est 18.58 30.10 20.74
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 5

Error Fl-bg Fl-fg Fl-all
All / All 22.84 0.00 20.78
All / Est 22.84 0.00 20.78
Noc / All 14.87 0.00 13.34
Noc / Est 14.87 0.00 13.34
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 6

Error Fl-bg Fl-fg Fl-all
All / All 18.28 1.12 16.47
All / Est 18.28 1.12 16.47
Noc / All 13.15 1.12 11.71
Noc / Est 13.15 1.12 11.71
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 7

Error Fl-bg Fl-fg Fl-all
All / All 1.10 69.66 14.51
All / Est 1.10 69.66 14.51
Noc / All 1.10 67.90 13.58
Noc / Est 1.10 67.90 13.58
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 8

Error Fl-bg Fl-fg Fl-all
All / All 0.69 15.93 3.50
All / Est 0.69 15.93 3.50
Noc / All 0.69 15.93 3.50
Noc / Est 0.69 15.93 3.50
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 9

Error Fl-bg Fl-fg Fl-all
All / All 1.36 50.58 13.93
All / Est 1.36 50.58 13.93
Noc / All 1.36 50.58 13.93
Noc / Est 1.36 50.58 13.93
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 10

Error Fl-bg Fl-fg Fl-all
All / All 11.47 10.75 11.31
All / Est 11.47 10.75 11.31
Noc / All 5.22 10.75 6.66
Noc / Est 5.22 10.75 6.66
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 11

Error Fl-bg Fl-fg Fl-all
All / All 11.23 11.21 11.22
All / Est 11.23 11.21 11.22
Noc / All 4.82 11.12 6.09
Noc / Est 4.82 11.12 6.09
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 12

Error Fl-bg Fl-fg Fl-all
All / All 14.41 5.29 13.80
All / Est 14.41 5.29 13.80
Noc / All 4.05 5.29 4.15
Noc / Est 4.05 5.29 4.15
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 13

Error Fl-bg Fl-fg Fl-all
All / All 13.83 32.38 16.11
All / Est 13.83 32.38 16.11
Noc / All 2.51 14.80 3.94
Noc / Est 2.51 14.80 3.94
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 14

Error Fl-bg Fl-fg Fl-all
All / All 13.76 14.56 13.77
All / Est 13.76 14.56 13.77
Noc / All 2.94 14.56 3.18
Noc / Est 2.94 14.56 3.18
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 15

Error Fl-bg Fl-fg Fl-all
All / All 32.05 8.45 29.91
All / Est 32.05 8.45 29.91
Noc / All 16.12 8.45 15.24
Noc / Est 16.12 8.45 15.24
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 16

Error Fl-bg Fl-fg Fl-all
All / All 27.73 36.52 29.02
All / Est 27.73 36.52 29.02
Noc / All 10.99 36.52 15.58
Noc / Est 10.99 36.52 15.58
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 17

Error Fl-bg Fl-fg Fl-all
All / All 23.90 23.52 23.86
All / Est 23.90 23.52 23.86
Noc / All 8.18 23.52 10.17
Noc / Est 8.18 23.52 10.17
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 18

Error Fl-bg Fl-fg Fl-all
All / All 34.24 99.98 65.47
All / Est 34.24 99.98 65.47
Noc / All 16.05 99.93 39.19
Noc / Est 16.05 99.93 39.19
This table as LaTeX

Input Image

Flow Result

Flow Error


Test Image 19

Error Fl-bg Fl-fg Fl-all
All / All 25.69 18.27 24.85
All / Est 25.69 18.27 24.85
Noc / All 8.98 18.27 10.33
Noc / Est 8.98 18.27 10.33
This table as LaTeX

Input Image

Flow Result

Flow Error




eXTReMe Tracker