From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
56.63 % |
69.90 % |
46.53 % |
74.63 % |
84.18 % |
63.13 % |
62.33 % |
86.60 % |
PEDESTRIAN |
41.93 % |
53.75 % |
33.84 % |
57.85 % |
72.51 % |
45.30 % |
50.74 % |
78.03 % |
Benchmark |
TP |
FP |
FN |
CAR |
31284 |
5476 |
1307 |
PEDESTRIAN |
15342 |
5355 |
1171 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
79.67 % |
85.08 % |
81.55 % |
692 |
66.97 % |
PEDESTRIAN |
66.14 % |
74.60 % |
68.47 % |
482 |
47.31 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
74.92 % |
22.82 % |
2.25 % |
1068 |
PEDESTRIAN |
45.56 % |
41.11 % |
13.33 % |
880 |
Benchmark |
# Dets |
# Tracks |
CAR |
32591 |
681 |
PEDESTRIAN |
16513 |
316 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.