From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
71.46 % |
76.76 % |
67.12 % |
81.16 % |
87.00 % |
71.44 % |
85.84 % |
88.08 % |
PEDESTRIAN |
57.63 % |
63.66 % |
53.12 % |
67.59 % |
77.78 % |
58.96 % |
73.36 % |
80.89 % |
Benchmark |
TP |
FP |
FN |
CAR |
33413 |
3347 |
880 |
PEDESTRIAN |
17356 |
3341 |
631 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
86.83 % |
86.83 % |
88.50 % |
616 |
74.85 % |
PEDESTRIAN |
78.92 % |
78.16 % |
80.81 % |
390 |
60.61 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
80.18 % |
18.32 % |
1.50 % |
727 |
PEDESTRIAN |
60.37 % |
35.19 % |
4.44 % |
661 |
Benchmark |
# Dets |
# Tracks |
CAR |
34293 |
893 |
PEDESTRIAN |
17987 |
403 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.