From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
55.14 % |
77.01 % |
39.76 % |
81.57 % |
87.29 % |
69.22 % |
49.42 % |
88.72 % |
PEDESTRIAN |
49.33 % |
65.45 % |
38.32 % |
69.62 % |
80.98 % |
57.88 % |
49.77 % |
83.82 % |
Benchmark |
TP |
FP |
FN |
CAR |
33391 |
3369 |
960 |
PEDESTRIAN |
17226 |
3471 |
567 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
86.73 % |
87.52 % |
88.22 % |
549 |
75.39 % |
PEDESTRIAN |
78.20 % |
81.58 % |
80.49 % |
474 |
62.87 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
82.13 % |
17.27 % |
0.60 % |
734 |
PEDESTRIAN |
59.26 % |
35.93 % |
4.81 % |
620 |
Benchmark |
# Dets |
# Tracks |
CAR |
34351 |
426 |
PEDESTRIAN |
17793 |
275 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.