From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
73.04 % |
79.44 % |
67.97 % |
85.90 % |
85.64 % |
75.66 % |
80.02 % |
88.57 % |
PEDESTRIAN |
60.38 % |
62.45 % |
60.05 % |
65.65 % |
81.61 % |
64.33 % |
82.23 % |
83.55 % |
Benchmark |
TP |
FP |
FN |
CAR |
35318 |
1442 |
1557 |
PEDESTRIAN |
16283 |
4414 |
368 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
90.37 % |
87.15 % |
91.84 % |
542 |
78.02 % |
PEDESTRIAN |
75.77 % |
81.29 % |
76.89 % |
234 |
61.05 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
91.29 % |
7.96 % |
0.75 % |
525 |
PEDESTRIAN |
52.96 % |
38.52 % |
8.52 % |
719 |
Benchmark |
# Dets |
# Tracks |
CAR |
36875 |
879 |
PEDESTRIAN |
16651 |
438 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.