From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
74.66 % |
76.11 % |
73.75 % |
79.59 % |
90.24 % |
76.27 % |
92.70 % |
90.46 % |
PEDESTRIAN |
57.65 % |
60.30 % |
56.19 % |
63.45 % |
81.58 % |
60.19 % |
83.35 % |
83.65 % |
Benchmark |
TP |
FP |
FN |
CAR |
31793 |
4967 |
628 |
PEDESTRIAN |
15641 |
5056 |
458 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
83.53 % |
89.59 % |
84.78 % |
458 |
74.53 % |
PEDESTRIAN |
72.05 % |
81.51 % |
73.36 % |
270 |
58.08 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
67.12 % |
29.43 % |
3.45 % |
655 |
PEDESTRIAN |
43.33 % |
42.96 % |
13.70 % |
664 |
Benchmark |
# Dets |
# Tracks |
CAR |
32421 |
959 |
PEDESTRIAN |
16099 |
424 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.