From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
62.81 % |
68.67 % |
58.32 % |
73.67 % |
81.81 % |
62.22 % |
83.53 % |
84.93 % |
PEDESTRIAN |
43.89 % |
45.93 % |
43.65 % |
48.14 % |
75.16 % |
50.50 % |
67.24 % |
79.06 % |
Benchmark |
TP |
FP |
FN |
CAR |
31792 |
4968 |
1312 |
PEDESTRIAN |
12800 |
7897 |
457 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
81.08 % |
82.83 % |
82.92 % |
676 |
66.22 % |
PEDESTRIAN |
57.66 % |
75.59 % |
59.64 % |
408 |
42.57 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
71.92 % |
26.13 % |
1.95 % |
889 |
PEDESTRIAN |
27.78 % |
53.70 % |
18.52 % |
807 |
Benchmark |
# Dets |
# Tracks |
CAR |
33104 |
1090 |
PEDESTRIAN |
13257 |
314 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.