From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
74.13 % |
71.03 % |
78.15 % |
78.81 % |
81.90 % |
81.28 % |
91.14 % |
87.69 % |
PEDESTRIAN |
60.00 % |
56.61 % |
65.86 % |
65.65 % |
69.35 % |
71.76 % |
79.98 % |
80.40 % |
Benchmark |
TP |
FP |
FN |
CAR |
32623 |
4137 |
2750 |
PEDESTRIAN |
16887 |
3810 |
2706 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
81.01 % |
86.19 % |
81.27 % |
95 |
68.75 % |
PEDESTRIAN |
68.14 % |
77.41 % |
68.52 % |
79 |
49.71 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
71.62 % |
25.83 % |
2.55 % |
378 |
PEDESTRIAN |
56.67 % |
29.26 % |
14.07 % |
399 |
Benchmark |
# Dets |
# Tracks |
CAR |
35373 |
803 |
PEDESTRIAN |
19593 |
310 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.