From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
76.38 % |
82.70 % |
70.93 % |
88.70 % |
88.77 % |
75.86 % |
86.00 % |
90.75 % |
PEDESTRIAN |
64.31 % |
70.69 % |
59.48 % |
75.71 % |
81.77 % |
67.52 % |
74.92 % |
84.40 % |
Benchmark |
TP |
FP |
FN |
CAR |
35242 |
1518 |
1493 |
PEDESTRIAN |
18432 |
2265 |
731 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
90.74 % |
89.87 % |
91.81 % |
392 |
81.03 % |
PEDESTRIAN |
84.52 % |
82.31 % |
85.52 % |
209 |
68.76 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
92.19 % |
7.21 % |
0.60 % |
466 |
PEDESTRIAN |
73.70 % |
23.70 % |
2.59 % |
513 |
Benchmark |
# Dets |
# Tracks |
CAR |
36735 |
959 |
PEDESTRIAN |
19163 |
406 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.