Method

Knowledge Distillation of Multi-scale Dense Prediction Transformer for Self-supervised Depth Est. [MS-DPT]
https://github.com/ji-min-song/KD-of-MS-DPT

Submitted on 20 Apr. 2023 14:58 by
jimin song (Jeonbuk National University)

Running time:0.1 s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
In this work, we argue that direct depth cue is
more effective to train a depth estimation
network.
To obtain the direct depth cue, we employ teacher-
student learning framework.
The teacher network is trained in a self-
supervised manner based on a photometric error,
and its predictions are utilized to train a
student network.
To obtain reliable depth cues, we constructed a
multi-scale dense prediction transformer with MC-
dropout, and multi-scale distillation loss is
proposed to improve the accuracy of the student
network.
Parameters:
variance_focus = 0.85
Latex Bibtex:
@article{song2023knowledge,
title={Knowledge Distillation of Multi-scale Dense Prediction Transformer for Self-supervised Depth Estimation},
author={Song, Jimin and Lee, Sang Jun},
year={2023}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

SILog sqErrorRel absErrorRel iRMSE
Error 12.83 3.62 11.01 13.43
This table as LaTeX

Test Image 0

SILog sqErrorRel absErrorRel iRMSE
Error 9.37 1.80 6.55 6.58
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

SILog sqErrorRel absErrorRel iRMSE
Error 14.62 4.05 9.74 15.92
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

SILog sqErrorRel absErrorRel iRMSE
Error 12.35 2.65 12.91 16.94
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

SILog sqErrorRel absErrorRel iRMSE
Error 6.66 1.05 7.25 10.60
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

SILog sqErrorRel absErrorRel iRMSE
Error 17.35 4.83 12.72 22.44
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

SILog sqErrorRel absErrorRel iRMSE
Error 11.25 1.38 7.87 13.90
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

SILog sqErrorRel absErrorRel iRMSE
Error 17.15 5.28 10.84 12.63
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

SILog sqErrorRel absErrorRel iRMSE
Error 8.16 1.61 9.23 11.57
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

SILog sqErrorRel absErrorRel iRMSE
Error 12.88 2.70 12.68 18.83
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

SILog sqErrorRel absErrorRel iRMSE
Error 18.11 7.95 14.48 15.45
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

SILog sqErrorRel absErrorRel iRMSE
Error 7.10 0.96 7.26 7.70
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

SILog sqErrorRel absErrorRel iRMSE
Error 14.36 3.36 13.34 17.40
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

SILog sqErrorRel absErrorRel iRMSE
Error 6.20 0.64 5.52 4.46
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

SILog sqErrorRel absErrorRel iRMSE
Error 13.93 5.02 8.92 9.06
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

SILog sqErrorRel absErrorRel iRMSE
Error 7.97 1.79 10.71 10.68
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

SILog sqErrorRel absErrorRel iRMSE
Error 7.82 16.36 38.74 43.75
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

SILog sqErrorRel absErrorRel iRMSE
Error 14.63 4.29 11.29 11.77
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

SILog sqErrorRel absErrorRel iRMSE
Error 15.48 5.86 13.31 25.69
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

SILog sqErrorRel absErrorRel iRMSE
Error 22.36 5.51 18.83 25.86
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

SILog sqErrorRel absErrorRel iRMSE
Error 13.86 3.79 11.80 14.41
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker