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Abstract

How should representations from complementary sen-
sors be integrated for autonomous driving? Geometry-
based sensor fusion has shown great promise for percep-
tion tasks such as object detection and motion forecasting.
However, for the actual driving task, the global context of
the 3D scene is key, e.g. a change in traffic light state can
affect the behavior of a vehicle geometrically distant from
that traffic light. Geometry alone may therefore be insuf-
ficient for effectively fusing representations in end-to-end
driving models. In this work, we demonstrate that imitation
learning policies based on existing sensor fusion methods
under-perform in the presence of a high density of dynamic
agents and complex scenarios, which require global con-
textual reasoning, such as handling traffic oncoming from
multiple directions at uncontrolled intersections. There-
fore, we propose TransFuser, a novel Multi-Modal Fusion
Transformer, to integrate image and LiDAR representations
using attention. We experimentally validate the efficacy of
our approach in urban settings involving complex scenarios
using the CARLA urban driving simulator. Our approach
achieves state-of-the-art driving performance while reduc-
ing collisions by 76% compared to geometry-based fusion.

1. Introduction

Image-only [16, 8, 41, 3, 42, 64, 53] and LiDAR-
only [46, 23] methods have recently shown impressive re-
sults for end-to-end driving. However, these studies focus
primarily on settings with limited dynamic agents and as-
sume near-ideal behavior from other agents in the scene.
With the introduction of adversarial scenarios in the re-
cent CARLA [21] versions, e.g. vehicles running red lights,
uncontrolled 4-way intersections, or pedestrians emerg-
ing from occluded regions to cross the road at random
locations, image-only approaches perform unsatisfactory
(Tab. 1) since they lack the 3D information of the scene re-
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Figure 1: Illustration. Consider an intersection with on-
coming traffic from the left. To safely navigate the intersec-
tion, the ego-vehicle (green) must capture the global con-
text of the scene involving the interaction between the traf-
fic light (yellow) and the vehicles (red). However, the traffic
light state is not visible in the LiDAR point cloud and the
vehicles are not visible in the camera view. Our TransFuser
model integrates both modalities via global attention mech-
anisms to capture the 3D context and navigate safely.

quired in these scenarios. While LiDAR consists of 3D in-
formation, LiDAR measurements are typically very sparse
(in particular at distance), and additional sensors are re-
quired to capture information missing in LiDAR scans, e.g.
traffic light states.

While most existing methods for end-to-end driving fo-
cus on a single input modality, autonomous driving sys-
tems typically come equipped with both cameras and Li-
DAR sensors [21, 47, 25, 59, 17, 26, 48, 1, 62]. This
raises important questions: Can we integrate representa-
tions from these two modalities to exploit their comple-
mentary advantages for autonomous driving? To what ex-
tent should we process the different modalities indepen-
dently and what kind of fusion mechanism should we em-
ploy for maximum performance gain? Prior works in the



field of sensor fusion have mostly focused on the per-
ception aspect of driving, e.g. 2D and 3D object detec-
tion [22, 12, 66, 9, 44, 31, 34, 61, 33, 37], motion fore-
casting [22, 36, 5, 35, 63, 6, 19, 38, 32, 9], and depth es-
timation [24, 60, 61, 33]. These methods focus on learn-
ing a state representation that captures the geometric and
semantic information of the 3D scene. They operate pri-
marily based on geometric feature projections between the
image space and different LiDAR projection spaces, e.g.
Bird’s Eye View (BEV) [22, 12, 66, 9, 44, 31, 34, 61, 33]
and Range View (RV) [39, 37, 22, 38, 9, 51]. Information
is typically aggregated from a local neighborhood around
each feature in the projected 2D or 3D space.

While these approaches fare better than image-only
methods, we observe that the locality assumption in their ar-
chitecture design hampers their performance in complex ur-
ban scenarios (Tab. 1a). For example, when handling traffic
at intersections, the ego-vehicle needs to account for inter-
actions between multiple dynamic agents and traffic lights
(Fig. 1). While deep convolutional networks can be used to
capture global context within a single modality, it is non-
trivial to extend them to multiple modalities or model in-
teractions between pairs of features. To overcome these
limitations, we use the attention mechanism of transform-
ers [54] to integrate global contextual reasoning about the
3D scene directly into the feature extraction layers of dif-
ferent modalities. We consider single-view image and Li-
DAR inputs since they are complementary to each other and
our focus is on integrating representations from different
types of modalities. We call the resulting model TransFuser
and integrate it into an auto-regressive waypoint prediction
framework (Fig. 2) designed for end-to-end driving.

Contributions: (1) We demonstrate that imitation learning
policies based on existing sensor fusion approaches are un-
able to handle adversarial scenarios in urban driving, e.g.,
unprotected turnings at intersections or pedestrians emerg-
ing from occluded regions. (2) We propose a novel Multi-
Modal Fusion Transformer (TransFuser) to incorporate the
global context of the 3D scene into the feature extraction
layers of different modalities. (3) We experimentally vali-
date our approach in complex urban settings involving ad-
versarial scenarios in CARLA and achieve state-of-the-art
performance. Our code and trained models are available at
https://github.com/autonomousvision/transfuser.

2. Related Work

Multi-Modal Autonomous Driving: Recent multi-modal
methods for end-to-end driving [58, 65, 51, 3] have shown
that complementing RGB images with depth and semantics
has the potential to improve driving performance. Xiao et
al. [58] explore RGBD input from the perspective of early,
mid and late fusion of camera and depth modalities and ob-

serve significant gains. Behl et al. [3] and Zhou et al. [65]
demonstrate the effectiveness of semantics and depth as ex-
plicit intermediate representations for driving. In this work,
we focus on image and LiDAR inputs since they are com-
plementary to each other in terms of representing the scene
and are readily available in autonomous driving systems.
In this respect, Sobh et al. [51] exploit a late fusion archi-
tecture for LiDAR and image modalities where each input
is encoded in a separate stream and then concatenated to-
gether. However, we observe that this fusion mechanism
suffers from high infraction rates in complex urban scenar-
ios (Tab. 1b) due to its inability to account for the behav-
ior of multiple dynamic agents. Therefore, we propose a
novel Multi-Modal Fusion Transformer that is effective in
integrating information from different modalities at multi-
ple stages during feature encoding and hence improves upon
the limitations of the late fusion approach.

Sensor Fusion Methods for Object Detection and Mo-
tion Forecasting: The majority of the sensor fusion works
consider perception tasks, e.g. object detection [22, 12, 66,
7, 44, 31, 34, 61, 33, 37] and motion forecasting [36, 5,
35, 63, 6, 19, 38]. They operate on multi-view LiDAR,
e.g. Bird’s Eye View (BEV) and Range View (RV), or com-
plement the camera input with depth information from Li-
DAR by projecting LiDAR features into the image space or
projecting image features into the BEV or RV space. The
closest approach to ours is ContFuse [34] which performs
multi-scale dense feature fusion between image and LiDAR
BEV features. For each pixel in the LiDAR BEV represen-
tation, it computes the nearest neighbors in a local neigh-
borhood in 3D space, projects these neighboring points into
the image space to obtain the corresponding image features,
aggregates these features using continuous convolutions,
and combines them with the LiDAR BEV features. Other
projection-based fusion methods follow a similar trend and
aggregate information from a local neighborhood in 2D or
3D space. However, the state representation learned by
these methods is insufficient since they do not capture the
global context of the 3D scene which is important for safe
maneuvers in adversarial scenarios. To demonstrate this,
we implement a multi-scale geometry-based fusion mecha-
nism, inspired by [34, 33], involving both image-to-LiDAR
and LiDAR-to-image feature fusion for end-to-end driving
in CARLA and observe high infraction rates in the com-
plex urban setting (Tab. 1b). To overcome this limitation,
we propose an attention-based Multi-Modal Fusion Trans-
former that incorporates global contextual reasoning and
achieves superior driving performance.

Attention for Autonomous Driving: Attention has been
explored in the context of driving for lane changing [13],
object detection [11, 32] and motion forecasting [32, 50,
49, 28, 15, 30, 29, 56]. Chen et al. [11] employ a recur-
rent attention mechanism over a learned semantic map for
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predicting vehicle controls. Li et al. [32] utilize attention
to capture temporal and spatial dependencies between ac-
tors by incorporating a transformer module into a recurrent
neural network. SA-NMP [56] is a concurrent work that
learns an attention mask over features extracted from a 2D
CNN, operating on LiDAR BEV projections and HD maps,
to focus on dynamic agents for safe motion planning. Chen
et al. [13] utilize attention in a hierarchical deep reinforce-
ment learning framework to focus on the surrounding vehi-
cles for lane changing in the TORCS racing simulator. They
incorporate a spatial attention module to detect the most rel-
evant regions in the image and a temporal attention module
to weight different time-step image inputs, which leads to
smoother lane changes. However, none of these approaches
considers multiple modalities or encodes the global context
of the 3D scene which is necessary for safely navigating
adversarial scenarios. In contrast, we demonstrate the ef-
fectiveness of attention for feature fusion between different
modalities on challenging urban driving scenarios.

3. Method
In this work, we propose an architecture for end-to-end

driving (Fig. 2) with two main components: (1) a Multi-
Modal Fusion Transformer for integrating information from
multiple modalities (single-view image and LiDAR), and
(2) an auto-regressive waypoint prediction network. The
following sections detail our problem setting, input and out-
put parameterizations, and each component of the model.

3.1. Problem Setting

We consider the task of point-to-point navigation in an
urban setting [23, 45, 46, 8, 16] where the goal is to com-
plete a given route while safely reacting to other dynamic
agents and following traffic rules.
Imitation Learning (IL): The goal of IL is to learn a pol-
icy π that imitates the behavior of an expert π∗. In our
setup, a policy is a mapping from inputs to waypoints that
are provided to a separate low-level controller to output ac-
tions. We consider the Behavior Cloning (BC) approach of
IL which is a supervised learning method. An expert policy
is first rolled out in the environment to collect a dataset,
D = {(X i,Wi)}Zi=1 of size Z, which consists of high-
dimensional observations of the environment, X , and the
corresponding expert trajectory, defined by a set of 2D way-
points in BEV space, i.e., W = {wt = (xt, yt)}Tt=1. This
BEV space uses the coordinate frame of the ego-vehicle.
The policy, π, is trained in a supervised manner using the
collected data, D, with the loss function, L.

argmin
π

E(X ,W)∼D [L(W, π(X ))] (1)

The high-dimensional observation,X , includes a front cam-
era image input and a LiDAR point cloud from a single

time-step. We use a single time-step input since prior
works on IL for autonomous driving have shown that us-
ing observation histories may not lead to performance
gain [40, 55, 2, 57]. We use the L1 distance between the
predicted trajectory, π(X ), and the expert trajectory,W , as
the loss function. We assume access to an inverse dynamics
model [4], implemented as a PID Controller I, which per-
forms the low-level control, i.e., steer, throttle, and brake,
provided the future trajectory W . The actions are deter-
mined as a = I(W).
Global Planner: We follow the standard protocol of
CARLA 0.9.10 and assume that high-level goal locations
G are provided as GPS coordinates. Note that these goal
locations are sparse and can be hundreds of meters apart as
opposed to the local waypoints predicted by the policy π.

3.2. Input and Output Parameterization

Input Representation: Following [45, 23], we convert the
LiDAR point cloud into a 2-bin histogram over a 2D BEV
grid with a fixed resolution. We consider the points within
32m in front of the ego-vehicle and 16m to each of the sides,
thereby encompassing a BEV grid of 32m × 32m. We di-
vide the grid into blocks of 0.125m× 0.125m which results
in a resolution of 256 × 256 pixels. For the histogram, we
discretize the height dimension into 2 bins representing the
points on/below and above the ground plane. This results in
a two-channel pseudo-image of size 256 × 256 pixels. For
the RGB input, we consider the front camera with a FOV
of 100◦. We extract the front image at a resolution of 400
× 300 pixels which we crop to 256 × 256 to remove radial
distortion at the edges.
Output Representation: We predict the future trajectory
W of the ego-vehicle in BEV space, centered at the current
coordinate frame of the ego-vehicle. The trajectory is repre-
sented by a sequence of 2D waypoints, {wt = (xt, yt)}Tt=1.
We use T = 4, which is the default number of waypoints
required by our inverse dynamics model.

3.3. Multi-Modal Fusion Transformer

Our key idea is to exploit the self-attention mechanism of
transformers [54] to incorporate the global context for im-
age and LiDAR modalities given their complementary na-
ture. The transformer architecture takes as input a sequence
consisting of discrete tokens, each represented by a feature
vector. The feature vector is supplemented by a positional
encoding to incorporate positional inductive biases.

Formally, we denote the input sequence as Fin ∈
RN×Df , where N is the number of tokens in the sequence
and each token is represented by a feature vector of dimen-
sionality Df . The transformer uses linear projections for
computing a set of queries, keys and values (Q, K and V),

Q = FinMq, K = FinMk, V = FinMv (2)
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Figure 2: Architecture. We consider single-view RGB image and LiDAR BEV representations (Sec. 3.2) as inputs to our
Multi-Modal Fusion Transformer (TransFuser) which uses several transformer modules for the fusion of intermediate feature
maps between both modalities. This fusion is applied at multiple resolutions (64×64, 32×32, 16×16 and 8×8) throughout
the feature extractor resulting in a 512-dimensional feature vector output from both the image and LiDAR BEV stream,
which is combined via element-wise summation. This 512-dimensional feature vector constitutes a compact representation
of the environment that encodes the global context of the 3D scene. It is then processed with an MLP before passing it to an
auto-regressive waypoint prediction network. We use a single layer GRU followed by a linear layer which takes in the hidden
state and predicts the differential ego-vehicle waypoints {δwt}Tt=1, represented in the ego-vehicle’s current coordinate frame.

where Mq ∈ RDf×Dq , Mk ∈ RDf×Dk and Mv ∈
RDf×Dv are weight matrices. It uses the scaled dot prod-
ucts between Q and K to compute the attention weights and
then aggregates the values for each query,

A = softmax
(
QKT

√
Dk

)
V (3)

Finally, the transformer uses a non-linear transformation to
calculate the output features, Fout which are of the same
shape as the input features, Fin.

Fout = MLP(A) + Fin (4)

The transformer applies the attention mechanism multiple
times throughout the architecture resulting in L attention
layers. Each layer in a standard transformer has multiple
parallel attention ‘heads’, which involve generating several
Q, K and V values per Fin for Eq. (2) and concatenating
the resulting values of A from Eq. (3).

Unlike the token input structures in NLP, we operate on
grid structured feature maps. Similar to prior works on the
application of transformers to images [52, 10, 43, 20], we
consider the intermediate feature maps of each modality to
be a set rather than a spatial grid and treat each element of
the set as a token. The convolutional feature extractors for
the image and LiDAR BEV inputs encode different aspects
of the scene at different layers. Therefore, we fuse these
features at multiple scales (Fig. 2) throughout the encoder.

Let the intermediate grid structured feature map of a sin-
gle modality be a 3D tensor of dimension H ×W ×C. For

S different modalities, these features are stacked together to
form a sequence of dimension (S ∗H ∗W )×C. We add a
learnable positional embedding, which is a trainable param-
eter of dimension (S ∗H ∗W )×C, so that the network can
infer spatial dependencies between different tokens at train
time. We also provide the current velocity as input by pro-
jecting the scalar value into a C dimensional vector using
a linear layer. The input sequence, positional embedding,
and velocity embedding are combined using element-wise
summation to form a tensor of dimension (S ∗H ∗W )×C.
As shown in Fig. 2, this tensor is fed as input to the trans-
former which produces an output of the same dimension.
We have omitted the positional embedding and velocity em-
bedding inputs in Fig. 2 for clarity. The output is then re-
shaped into S feature maps of dimension H ×W ×C each
and fed back into each of the individual modality branches
using an element-wise summation with the existing feature
maps. The mechanism described above constitutes feature
fusion at a single scale. This fusion is applied multiple
times throughout the ResNet feature extractors of the image
and LiDAR BEV branches at different resolutions (Fig. 2).
However, processing feature maps at high spatial resolu-
tions is computationally expensive. Therefore, we down-
sample higher resolution feature maps from the early en-
coder blocks using average pooling to a fixed resolution of
H = W = 8 before passing them as inputs to the trans-
former and upsample the output to the original resolution
using bilinear interpolation before element-wise summation
with the existing feature maps.

After carrying out dense feature fusion at multiple res-



olutions (Fig. 2), we obtain a feature map of dimension
8×8×512 from the feature extractors of each modality for
an input of resolution 256×256 pixels. These feature maps
are reduced to a dimension of 1× 1× 512 by average pool-
ing and flattened to a 512-dimensional feature vector. The
feature vector of dimension 512 from both the image and
the LiDAR BEV streams are then combined via element-
wise summation. This 512-dimensional feature vector con-
stitutes a compact representation of the environment that en-
codes the global context of the 3D scene. This is then fed to
the waypoint prediction network which we describe next.

3.4. Waypoint Prediction Network

As shown in Fig. 2, we pass the 512-dimensional fea-
ture vector through an MLP (comprising 2 hidden lay-
ers with 256 and 128 units) to reduce its dimensional-
ity to 64 for computational efficiency before passing it to
the auto-regressive waypoint network implemented using
GRUs [14]. We initialize the hidden state of the GRU with
the 64-dimensional feature vector. The update gate of the
GRU controls the flow of information encoded in the hid-
den state to the output and the next time-step. It also takes
in the current position and the goal location (Sec. 3.1) as
input, which allows the network to focus on the relevant
context in the hidden state for predicting the next waypoint.
We provide the GPS coordinates of the goal location (reg-
istered to the ego-vehicle coordinate frame) as input to the
GRU rather than the encoder since it lies in the same BEV
space as the predicted waypoints and correlates better with
them compared to representing the goal location in the per-
spective image domain [8]. Following [23], we use a single
layer GRU followed by a linear layer which takes in the hid-
den state and predicts the differential ego-vehicle waypoints
{δwt}Tt=1 for T = 4 future time-steps in the ego-vehicle
current coordinate frame. Therefore, the predicted future
waypoints are given by {wt = wt−1 + δwt}Tt=1. The input
to the first GRU unit is given as (0,0) since the BEV space
is centered at the ego-vehicle’s position.
Controller: We use two PID controllers for lateral and lon-
gitudinal control to obtain steer, throttle and brake values
from the predicted waypoints, {wt}Tt=1. The longitudinal
controller takes in the magnitude of a weighted average of
the vectors between waypoints of consecutive time-steps
whereas the lateral controller takes in their orientation. For
the PID controllers, we use the same configuration as in
the author-provided codebase of [8]. Implementation de-
tails can be found in the supplementary.

3.5. Loss Function

Following [8], we train the network using an L1 loss be-
tween the predicted waypoints and the ground truth way-
points (from the expert), registered to the current coordi-
nate frame. Let wgt

t represent the ground truth waypoint

for time-step t, then the loss function is given by:

L =

T∑
t=1

||wt −wgt
t ||1 (5)

Note that the ground truth waypoints {wgt
t }which are avail-

able only at training time are different from the sparse goal
locations G provided at both training and test time.

4. Experiments
In this section, we describe our experimental setup, com-

pare the driving performance of our approach against sev-
eral baselines, conduct an infraction analysis to study dif-
ferent failure cases, visualize the attention maps of Trans-
Fuser and present an ablation study to highlight the impor-
tance of different components of our model.

Task: We consider the task of navigation along a set of
predefined routes in a variety of areas, e.g. freeways, urban
areas, and residential districts. The routes are defined by a
sequence of sparse goal locations in GPS coordinates pro-
vided by a global planner and the corresponding discrete
navigational commands, e.g. follow lane, turn left/right,
change lane. Our approach uses only the sparse GPS lo-
cations to drive. Each route consists of several scenarios,
initialized at predefined positions, which test the ability of
the agent to handle different kinds of adversarial situations,
e.g. obstacle avoidance, unprotected turns at intersections,
vehicles running red lights, and pedestrians emerging from
occluded regions to cross the road at random locations. The
agent needs to complete the route within a specified time
limit while following traffic regulations and coping with
high densities of dynamic agents.

Dataset: We use the CARLA [21] simulator for training
and testing, specifically CARLA 0.9.10 which consists of
8 publicly available towns. We use 7 towns for training
and hold out Town05 for evaluation. For generating train-
ing data, we roll out an expert policy designed to drive us-
ing privileged information from the simulation and store
data at 2FPS. Please refer to the supplementary material
for additional details. We select Town05 for evaluation
due to the large diversity in drivable regions compared to
other CARLA towns, e.g. multi-lane and single-lane roads,
highways and exits, bridges and underpasses. We consider
two evaluation settings: (1) Town05 Short: 10 short routes
of 100-500m comprising 3 intersections each, (2) Town05
Long: 10 long routes of 1000-2000m comprising 10 inter-
sections each. Each route consists of a high density of dy-
namic agents and adversarial scenarios which are spawned
at predefined positions along the route. Since we focus on
handling dynamic agents and adversarial scenarios, we de-
couple this aspect from generalization across weather con-
ditions and evaluate only on ClearNoon weather.



Metrics: We report results on 3 metrics. (1) Route Com-
pletion (RC), percentage of route distance completed, (2)
Driving Score (DS), which is route completion weighted
by an infraction multiplier that accounts for collisions with
pedestrians, vehicles, and static elements, route deviations,
lane infractions, running red lights, and running stop signs,
and (3) Infraction Count. Additional details regarding the
metrics and infractions are provided in the supplementary.

Baselines: We compare our TransFuser model to several
baselines. (1) CILRS [16] is a conditional imitation learn-
ing method in which the agent learns to predict vehicle con-
trols from a single front camera image while being condi-
tioned on the navigational command. We closely follow the
author-provided code and reimplement CILRS for CARLA
0.9.10 to account for the additional navigational commands
compared to CARLA 0.8.4. (2) LBC [8] is a knowledge
distillation approach where a teacher model with access to
ground truth BEV semantic maps is first trained using ex-
pert supervision to predict future waypoints followed by an
image-based student model which is trained using supervi-
sion from the teacher. It is the current state-of-the-art ap-
proach on CARLA 0.9.6. We use the latest author-provided
codebase for training on CARLA 0.9.10, which combines
3 input camera views by stacking different viewpoints as
channels. (3) Auto-regressive IMage-based waypoint pre-
diction (AIM): We implement our auto-regressive waypoint
prediction network with an image-based ResNet-34 encoder
which takes just the front camera image as input. This base-
line is equivalent to adapting the CILRS model to predict
waypoints conditioned on sparse goal locations rather than
vehicle controls conditioned on navigational commands.
The image encoder used for this is the same as CILRS and
our model. (4) Late Fusion: We implement a version of
our architecture where the image and the LiDAR features
are extracted independent of each other using the same en-
coders as TransFuser but without the transformers (similar
to [51]), which are then fused through element-wise sum-
mation and passed to the waypoint prediction network. (5)
Geometric Fusion: We implement a multi-scale geometry-
based fusion method, inspired by [34, 33], involving both
image-to-LiDAR and LiDAR-to-image feature fusion. We
unproject each 0.125m× 0.125m block in our LiDAR BEV
representation into 3D space resulting in a 3D volume. We
randomly select 5 points from the LiDAR point cloud ly-
ing in this 3D volume and project them into the image
space. We aggregate the image features of these points via
element-wise summation before passing them to a 3-layer
MLP. The output of the MLP is then combined with the Li-
DAR BEV feature of the corresponding 0.125m × 0.125m
block at multiple resolutions throughout the feature extrac-
tor. Similarly, for each image pixel, we aggregate informa-
tion from the LiDAR BEV features at multiple resolutions.
This baseline is equivalent to replacing the transformers in

our architecture with projection-based feature fusion.
We also report results for the expert used for generating

our training data, which defines an upper bound for the per-
formance on each evaluation setting. We provide additional
details regarding all the baselines in the supplementary.

Implementation Details: We use 2 sensor modalities, the
front camera RGB image and LiDAR point cloud converted
to BEV representation (Sec. 3.2), i.e., S = 2. The RGB im-
age is encoded using a ResNet-34 [27] which is pre-trained
on ImageNet [18]. The LiDAR BEV representation is en-
coded using a ResNet-18 [27] which is trained from scratch.
In our default TransFuser configuration, we use 1 trans-
former per resolution and 4 attention heads for each trans-
former. We select Dq, Dk, Dv from {64, 128, 256, 512} for
the 4 transformers corresponding to the feature embedding
dimension Df at each resolution. For each of our base-
lines, we tested different perception backbone and chose the
best: ResNet-34 for CILRS and AIM, ResNet-50 for LBC,
ResNet-34 as the image encoder and ResNet-18 as the Li-
DAR BEV encoder for each of the sensor fusion methods.
Additional details can be found in the supplementary.

4.1. Results

Performance of CILRS and LBC: In our first experiment,
we examine to what extent the current image-based meth-
ods on CARLA scale to the new 0.9.10 evaluation setting
involving complex multi-lane intersections, adversarial sce-
narios, and heavy infraction penalties. From the results
in Tab. 1a we observe that CILRS performs poorly on all
evaluation settings. This is not surprising since CILRS is
conditioned on discrete navigational commands whose data
distribution is imbalanced as shown in the supplementary.
While the original LBC [8] architecture uses only the front
camera image as input, the authors recently released an up-
dated version of their architecture with 2 major modifica-
tions, (1) multi-view camera inputs (front, 45◦ left, and 45◦

right), (2) target heatmap as input (instead of navigational
command) which is formed by projecting the sparse goal lo-
cation in the image space. We train their updated model on
our data and observe that LBC performs significantly better
than CILRS on the short routes (Tab. 1a), which is expected
since it is trained using supervision from the teacher model
which uses ground truth BEV semantic labels. However,
LBC’s performance drops drastically when evaluated on the
long routes where it achieves 32.09 RC but suffers multiple
infractions resulting in a low DS of 7.05. This is due to
the frequent red light infractions and collision with vehicles
(Tab. 1b) resulting in large multiplicative penalties on the
DS. These results show that CILRS and LBC are unable to
handle the complexities of urban driving.

AIM is a strong baseline: Since the performance of CILRS
and LBC drops significantly on the long routes, we focus on



Method Town05 Short Town05 Long
DS ↑ RC ↑ DS ↑ RC ↑

CILRS [16] 7.47 ± 2.51 13.40 ± 1.09 3.68 ± 2.16 7.19 ± 2.95
LBC [8] 30.97 ± 4.17 55.01 ± 5.14 7.05 ± 2.13 32.09 ± 7.40

AIM 49.00 ± 6.83 81.07 ± 15.59 26.50 ± 4.82 60.66 ± 7.66
Late Fusion 51.56 ± 5.24 83.66 ± 11.04 31.30 ± 5.53 68.05 ± 5.39

Geometric Fusion 54.32 ± 4.85 86.91 ± 10.85 25.30 ± 4.08 69.17 ± 11.07
TransFuser (Ours) 54.52 ± 4.29 78.41 ± 3.75 33.15 ± 4.04 56.36 ± 7.14

Expert 84.67 ± 6.21 98.59 ± 2.17 38.60 ± 4.00 77.47 ± 1.86

(a) Driving Performance. We report the mean and standard deviation over 9
runs of each method (3 training seeds, each seed evaluated 3 times) on 2 metrics:
Route Completion (RC) and Driving Score (DS), in Town05 Short and Town05
Long settings comprising high densities of dynamic agents and scenarios.
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(b) Infractions. We report the mean value of the
total infractions incurred by each model over the
9 evaluation runs in the Town05 Short setting.

Table 1: Results. We compare our TransFuser model with CILRS, LBC, auto-regressive image-based waypoint predic-
tion network (AIM), and sensor fusion methods (Late Fusion of image and LiDAR features, Geometric feature projections
between image and LiDAR BEV space) in terms of driving performance (Tab. 1a) and infractions incurred (Tab. 1b).

designing a strong image-based baseline next. Towards this
goal, we replace the learned controller of CILRS with our
auto-regressive waypoint prediction network. We observe
that AIM significantly outperforms CILRS on all evaluation
settings (Tab. 1a), achieving nearly 7 times better perfor-
mance. This is likely because AIM uses our inverse dynam-
ics model (PID controller) for low-level control and repre-
sents goal locations in the same BEV coordinate space in
which waypoints are predicted. In contrast, LBC’s goal lo-
cations are represented as heatmaps in image space. Fur-
thermore, AIM uses an auto-regressive GRU-based way-
point prediction network which enables the processing of
these goal locations directly at the final stage of the net-
work. This provides a prior that simplifies the learning of
behaviors that follow the path to the goal location which
could make the encoder prioritize information regarding
high-level semantics of the scene, e.g. traffic light state,
rather than features relevant for low-level control. AIM out-
performs LBC by 58.21% on the short routes and 275.89%
on the long routes. The red light violations of LBC lead
to a compounding of other infractions (e.g. collisions with
vehicles), which rapidly drops its DS compared to AIM.

Sensor Fusion Methods: The goal of this experiment is
to determine the impact of the LiDAR modality on the driv-
ing performance and compare different fusion methods. For
this, we compare our TransFuser to two baselines, Late
Fusion (LF) and Geometric Fusion (GF). We observe that
LF outperforms AIM on all evaluation settings (Tab. 1a).
This is expected since LiDAR provides additional 3D con-
text which helps the agent to better navigate urban environ-
ments. Furthermore, we observe even better performance
on the short routes when replacing the independent feature
extractors of image and LiDAR branches with multi-scale
geometry-based fusion encoder. However, both LF and GF
suffer from a sharp drop in DS compared to their RC. We
hypothesize that this occurs because they do not incorporate

global contextual reasoning which is necessary to safely
navigate the intersections, and focus primarily on naviga-
tion to the goal at all costs while ignoring obstacles which
leads to several infractions Tab. 1b. This has a compound-
ing effect on the long routes due to the exponential nature
of the infraction penalty, resulting in a rapid drop in DS. In
contrast, our TransFuser model outperforms GF by 31.02%
on DS with an 18.52% lower RC on Town05 Long. It also
achieves a 51.58% reduction compared to LF and 76.11%
reduction compared to GF in collisions and 23.5% reduc-
tion compared to LF and 21.93% reduction compared to GF
in red light violations. This shows that our model drives
cautiously and focuses on dynamic agents and traffic lights.
This indicates that attention is effective in incorporating the
global context of the 3D scene which allows for safe driv-
ing. We provide driving videos in the supplementary.

Limitations: We observe that all fusion methods struggle
with red light violations (Tab. 1b). This is because detecting
red lights is very challenging in Town05 since they are lo-
cated on the opposite side of the intersection and are barely
visible in the input image. Unlike some existing meth-
ods [53], we do not use any semantic supervision for red
lights which furthers exacerbates this issue since the learn-
ing signal for red light detection is very weak. We expect
the red light detection performance of the fusion approaches
to improve when incorporating such additional supervision.

4.2. Attention Map Visualizations

The transformer takes in 64 image feature tokens and
64 LiDAR feature tokens as input where each token cor-
responds to a 32× 32 patch in the input modality. We con-
sider 1000 frames from Town05 intersections and examine
the top-5 attention weights for the 24 tokens in the 2nd, 3rd

and 4th rows of the image feature map and the 24 tokens in
the 4th, 5th and 6th rows of the LiDAR feature map. We
select these tokens since they correspond to the intersection



Figure 3: Attention Maps. For the yellow query token,
we show the top-5 attended tokens in green and highlight
the presence of vehicles in the LiDAR point cloud in red.
TransFuser attends to the vehicles and traffic lights at inter-
sections, albeit at a slightly different location.

region in the input modality and contain traffic lights and
vehicles. We observe that for 62.75% of the image tokens,
all the top-5 attended tokens belong to the LiDAR and for
88.87%, at least one token in the top-5 attended tokens be-
long to the LiDAR. Similarly, for 78.45% of the LiDAR to-
kens, all the top-5 attended tokens belong to the image and
for 98.95%, at least one token in the top-5 attended tokens
belong to the image. This indicates that TransFuser is ef-
fective in aggregating information from image and LiDAR.
We show four such frames in Fig. 3. We observe a common
trend in attention maps: TransFuser attends to the vehicles
and traffic lights at intersections, albeit at a slightly different
location in the image and LiDAR feature maps. Additional
visualizations are provided in the supplementary.

4.3. Ablation Study

In our default configuration, we use 1 transformer per
resolution, 8 attention layers and 4 attention heads for each
transformer and carry out fusion at 4 resolutions. In this ex-
periment, we present ablations on number of scales, atten-
tion layers, shared or separate transformers and posi- tional
embedding, in the Town05 Short evaluation setting.
Is multi-scale fusion essential? We show results on scales
1 to 4 where 1 indicates fusion at a resolution of 8×8 in the
last ResNet layer, 2 indicates fusion at 8× 8 and 16× 16 in
the last and the penultimate ResNet layers respectively and
similarly for scales 3 and 4. We observe an overall degra-
dation in performance when reducing the number of scales
from 4 to 1 (Tab. 2). This happens because different con-
volutional layers in ResNet learn different types of features
regarding the input, therefore, multi-scale fusion is effective
in integrating these features from different modalities.
Are multiple transformers necessary? We test a version
of our model which uses shared parameters for the trans-
formers (Shared Transformer in Tab. 2) and observe a sig-
nificant drop in DS. This is intuitive since different convolu-
tional layers in ResNet learn different types of features due

Parameter Value DS ↑ RC ↑

Scale
1 41.94 56.09
2 52.82 74.70
3 52.41 71.40

Shared Transformer - 55.36 77.54

Attention layers
1 50.46 96.53
4 51.38 79.35

No Pos. Embd - 52.45 93.64
Default Config - 59.99 74.86

Table 2: Ablation Study. We report the DS on Town05
Short setting for different TransFuser configurations.

to which each transformer has to focus on fusing different
types of features at each resolution.
Are multiple attention layers required? We report results
for 1-layer and 4-layer variants of our TransFuser in Tab. 2.
We observe that while the 1-layer variant has a very high
RC, its DS is significantly lower. However, when we in-
crease the number of attention layers to 4, the model can
sustain its DS even with an 18% lower RC. This indicates
that the model becomes more cautious with additional at-
tention layers. As we further increase L to 8 in the default
configuration, DS also increases. This shows that multiple
attention layers lead to cautious driving agents.
Is the positional embedding useful? Intuitively, we expect
the learnable positional embedding to help since modeling
spatial dependencies between dynamic agents is crucial for
safe driving. This is indeed apparent in Tab. 2 where we
observe a significant drop in DS in the absence of positional
embedding even though RC increases by 25%.

5. Conclusion

In this work, we demonstrate that IL policies based on
existing sensor fusion methods suffer from high infrac-
tion rates in complex driving scenarios. To overcome this
limitation, we present a novel Multi-Modal Fusion Trans-
former (TransFuser) for integrating representations of dif-
ferent modalities. The TransFuser uses attention to capture
the global 3D scene context and focuses on dynamic agents
and traffic lights, resulting in state-of-the-art performance
on CARLA. Given that our method is flexible and generic,
it would be interesting to explore it further with additional
sensors, e.g. radar, or apply it to other embodied AI tasks.
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