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Abstract. In this supplementary document, we first provide addi-
tional methodological and experimental details. Next, we include supple-
mentary experiments to complement the main paper. Finally, we present
additional qualitative examples. The supplementary video contains
qualitative visualizations of the scenarios generated via SLEDGE and of
the increased failure rate of PDM-Closed when tested on these scenarios.

1 Additional Methodological Details

In this section, we provide detailed information regarding the architectures and
methodologies introduced in our work.

1.1 Raster-to-Vector Autoencoder

Encoder. The Raster-to-Vector Autoencoder (RVAE) applies a ResNet-50 as
its encoder π [7]. This is pretrained on ImageNet [5], with a modified first con-
volution layer to account for the 12-channel Rasterized Scene Image (RSI) in-
put (denoted as xRSI). We apply group normalization (with 32 channels) and a
3 × 3 convolution layer on the ResNet output to extract an 8 × 8 feature gird
with 128 channels that is split into two chunks for the mean πµ(xRSI) and vari-
ance πσ(xRSI) of the VAE. After reparameterization [10], the encoder outputs a
8× 8× 64 tensor, which we refer to as the Rasterized Latent Map (RLM).

Decoder. The transformer decoder ϕ applies 6 cross-attention based trans-
former decoder layers with a dimensionality of dmodel = 512 and dffn = 1024
for the Feed-Forward-Networks (FFNs), and no dropout. Each grid cell of the
latent vector is linearly projected to dmodel and functions as keys and values
in the transformer. The queries are learnable parameters corresponding to each
entity in the vector output.

Prediction Heads. For each query output, we apply an FFN with a single
hidden layer of size dffn = 1024 to output the attributes of the entity. The FFN
outputs a 20×2 set of point coordinates for polylines (lanes and traffic lights) or
a descriptor with 6 attributes (2D position, orientation, 2D extent, and speed)
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for vehicles and pedestrians. Similarly, static objects have 5 attributes, omitting
the speed scalar. We use tanh activation for 2D positions and orientation and
re-scale the attributes to [−32, 32]2 and [−π, π], respectively. The ego velocity
v ∈ R2 has two attributes for the longitudinal and lateral axis. The existence
attribute p ∈ [0, 1] is predicted with a linear layer based on the entity queries
with variable count.

Training. During training, we employ a bipartite matching loss that uniquely
pairs each ground truth entity (indexed by i) with a corresponding entity σ(i).
For polylines, we define the loss

Lline =
∑

i∈{L,R,G}

(
λp

line · LCE(pi, p̂σ(i)) + λattr
line · 1[pi>0] · ∥Li − L̂σ(i)∥1

)
, (1)

where LCE(·, ·) denotes the cross-entropy loss, p, and p̂ represent the actual
and predicted existence probabilities of a polyline. L and L̂ are the actual and
predicted polyline coordinates, both as a R20×2 matrix. The terms λp

line and λattr
line

are hyperparameters, tuned to balance the components of the loss, set to 10 and
4, respectively. We similarly define the loss for all predicted bounding boxes as

Lbox =
∑

i∈{V,P,O}

(
λp

box · LCE(pi, p̂σ(i)) + λattr
box · 1[pi>0] · ∥bi − b̂σ(i)∥1

)
, (2)

where b and b̂ denote the actual and predicted bounding box attributes. We
set the hyperarameters λp

box and λattr
box to 5 and 1, respectively. We found this

simpler loss to be sufficient, unlike the complex IoU-based losses used in prior
work on object detection that mostly deals with axis-aligned bounding boxes [3].
For the velocity vector of the ego vehicle, we define a L1-Loss

Lego = ∥v − v̂∥1, (3)

where v and v̂ represent the actual and the predicted velocity, both in R2.
Finally, we regularize the RLM with a weighted Kullback-Leibler-term following
a standard VAE [10]

LKL =

(
−1

2

∑
1 + log

(
πσ(xRSI)

2
)
− πµ(xRSI)

2 − πσ(xRSI)
2

)
· λKL, (4)

where λKL is set to 0.1. The total loss is given by

Ltotal = Lline + Lbox + Lego + LKL. (5)

We compute the matching with the Hungarian algorithm [11] for each class type
in {L,R,G,V,P,O} independently. For calculating the pairwise cost of entities
during matching, we use Lline from Eq. (1) for polylines and a modified version
of Lbox from Eq. (2) for bounding boxes. Specifically, we only consider the L1

cost between the bounding box positions while ignoring the remaining attributes
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Table 1: DiT Configurations. We experiment with 3 different model sizes.

Model #Layers Hidden size #Heads #Params batch/GPU GPUh

DiT-B 12 768 12 138M 512 96
DiT-L 24 1024 16 487M 192 96
DiT-XL 28 1152 16 718M 128 960

to prevent undesired matching of distant agents based on similar velocities or
2D bounding box extents.

Implementation. We train the RVAE using tuPlan Garage1. Training takes
roughly 24 hours distributed over 4 A100s. We train the RVAE with a learning
rate of 5e−5 for 40 epochs and divide the learning rate by 10 after 35 epochs.
Moreover, we use a batch size of 32 per GPU and AdamW as the optimizer
with a weight decay of 5e−3. We employ 30 lane queries, 10 queries each for red
and green traffic lights, 30 vehicle queries, 10 pedestrian queries, 20 queries for
static objects, and 1 query for the ego velocity. If more entities are in the scene
than available queries, we only consider the nearest entities to the ego center as
targets. We discard ground-truth vehicles and static objects which are not on
the driveable area. We use a threshold of 0.3 for filtering all existence attributes
p ∈ [0, 1] during inference.

1.2 Diffusion Transformer

Architectures. We summarize the DiT-B, DiT-L, and DiT-XL configurations
of our work in Table 1. We follow the architectures of [16], where we leave the
patch size p constant to 1, resulting in 8× 8 input tokens from the RLM.

Implementation. We train the DiT with Diffusers2. We trained DiT-B and
DiT-L for 1 day on 4 A100s and our final DiT-XL model for 5 days on 8 A100s.
All models were trained with an AdamW optimizer, a weight decay of 1e−6, an
exponential moving average (EMA) decay of 0.9999, and a constant learning
rate of 1e−4. We use the DDPM scheduler [9], with a tmax = 1000 linear vari-
ance schedule from 0.0015 to 0.015. During inference, we exclusively apply 100
denoising steps with a classifier-free guidance scale of 4.0.

1.3 Route Extrapolation

Initial Pose. In the initial step for route extrapolation, we generate a 64m×64m
map with agents without masking and only conditioned on the map ID label.
Then, we (a) determine the nearest lane from the current position (initially at
(0, 0)) and retrieve all available paths using DFS. We prioritize paths that reach
1 https://github.com/autonomousvision/tuplan_garage
2 https://github.com/huggingface/diffusers
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the tile ends of the 64m×64m map and select a route according to the difficulty
(minimizing or maximizing turns).

RLM Proposals. Next, we (b) transform the previously predicted map poly-
lines into the local coordinate frame of route end pose and rasterize the map as
RSI. We forward the RSI in our encoder π, obtaining the 8× 8× 32 latent grid
of the previously generated map. In (c), we sample N = 8 random 8 × 8 × 32
RLMs from N (0, I), which are to be denoised.

Inpainting. We concatenate the 4× 8× 32 region of the encoded latent, corre-
sponding to half a frame, where x ∈ [−32, 0) (behind the ego vehicle), with the
4 × 8 × 32 region of the random RLMs, corresponding to half a frame, where
x ∈ (0, 32] (ahead of the ego vehicle). We then (d) apply 100 denoising steps
(conditioned on the map label with a guidance scale of 4.0) only on the ran-
domly initialized sections of the RLM. We found this strategy slightly better in
enforcing map coherency than simultaneously denoising masked and unmasked
sections of the RLMs.

Proposal Scoring. After decoding the RLM’s via ϕ, we (e) match the lane
polylines for all N new samples with the previous map on the overlapping frame
section (where x ∈ [−32, 0)) and assign a cost for each new proposal. The cost
is based on average point-wise distances of lines (clipped to 3m), where we add
a fixed cost of 3m if lines of the current or proposed graph remain unmatched.
We (f) select the proposal with minimum cost, extract the lanes and agents in
the newly generated section (i.e. where x ∈ [0, 32]), and convert the new tile in
global coordinates of the initial frame. We repeat step (a)-(f), starting from the
current route end pose, until the desired route length is reached.

Limitations. The route extrapolation has several modes of error. If no suffi-
cient path is found during DFS expansion (i.e., due to errors in connectivity),
the newly generated tile overlaps with the existing map. Specifically, tile edges
that cross intersections are difficult for DiT-XL to inpaint. Despite these chal-
lenges, the DiT-XL model can generate large maps autoregressively, enabling
long simulations, which we view as a foundation for future work.

1.4 Lane Graph Representations

Vector Lane Representation. The native lanes in nuPlan are arranged into
groups of parallel blocks. This results in many individual polylines with only a
single adjacent line in the forward or backward direction. Our lane representation
deviates slightly from nuPlan, where consecutive lane nodes are summarized into
one individual line, as shown in Fig. 1. We first collect all nodes with incoming
degree unequal 1 (called start nodes) or outgoing degree unequal 1 (called end
nodes). We further extend the start node set with outgoing lanes of end nodes.
Next, we apply Depth-First-Search (DFS) on all start nodes until an end node
or start node is reached. If a new path was found, we add the polyline to our line
set. We found this strategy effective, as it requires about 40% fewer lane queries
and simplifies inferring the lane adjacency.
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#Lanes = 42
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Fig. 1: Lane Graphs. We use a more compact lane graph representation for generation
and simulation by combining adjacent lines that only permit a single traversable path.

(a) Flow (b) Binary Mask (c) Skan Polylines (d) Graph

Fig. 2: Skan. Our pipeline uses functions from established image processing libraries
to skeletonize and extract a lane graph from the RSI.

Skan for Lane Graph Extraction from RSI. Extracting lane graphs from
raster images is challenging, as it requires inferring precise polyline locations and
connectivity from thin structures in a dense pixel grid. Our pipeline, involving
multiple processing steps, is shown in Fig. 2. First, we create a binary lane
mask (using a threshold of 0.1) and apply a skeletonization algorithm [19] to
gather a one-pixel wide line structure. Using the skan library [15], we extract
a sequence of pixel coordinates for individual lines in the mask, which we align
to the flow direction and convert into the ego coordinate frame in [−32, 32]2.
Finally, following the heuristic applied in our proposed approach, we connect
polylines if the start- and end-poses have less than 1.5m displacement and differ
less than 60 degrees in orientation.

Reconstruction Metrics. Given the varying formulations of lane graphs used
in nuPlan, our models, and the baselines, we define a uniform representation as
a foundation for all graph-based metrics. We interpolate along all polylines while
inferring the orientation to extract poses at fixed 1.5m intervals. The poses are
connected along polylines and between lane adjacencies at start- and endposes.
We assign predicted poses to ground-truth poses using a Hungarian matching
algorithm [11], of poses which differ less than 60 degrees in orientation and 1.5m
in displacement. Given the assignment, we calculate (1) F1 as the harmonic
mean of the precision and recall and (2) Lateral L2 (Lat.) as the lateral offset
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between matched pairs in the Euclidean distance. We introduce the latter met-
ric to disentangle longitudinal interpolation mismatches from structural errors
in the predicted lanes. Next, we measure the (3) Chamfer distance using all
poses by averaging the squared distance between nearest-neighbor pairs between
both point sets and summing the averages. Following literature for aerial lane
extraction [8], we calculate the metrics in two settings. For the (1) GEO scores,
we utilize the complete graph in the 64m×64m frames. The (2) TOPO scores
compute the reachability graph of every tenth node and up to a radius of 50m.
We compute F1, Lateral L2, and Chamfer for each sub-graph and average the
metrics. Consequently, connectivity errors can lead to substantial deductions in
TOPO results.

1.5 Lane Graph Generation

VAE (RSI). We follow the encoder architecture as described in Section 1.1 with
two channels for the lane flow. We input the 256×256×2 RSI and use the same
latent map shape as our RVAE. The decoder applies 5 up-convolutions, each
followed by batch normalization and a ReLU activation. With a last convolution
layer, the model reconstructs the two-channel flow image. We train the VAE
with a binary cross entropy loss (given the lane channels are normalized in [0, 1]),
while adding a KL term weighted by λKL = 1.0. We use the same training setting
from our RVAE (see Section 1.1), including optimizer, learning rate schedules,
and number of epochs. During inference, we extract the vectorized lane graph
according to Section 1.4.

HDMapGen. Our re-implementation of HDMapGen [14] is trained using the
GRAN codebase3. The graph representation is similar to our lane formulation in
Section 1.4, where the locations of global key points are placed on the start, end,
or transitioning positions of polylines. We further formulate local nodes as 20
equispaced points interpolated along the polylines (i.e. connections of global key
points). The autoregressive model predicts the adjacency matrix and node coor-
dinate at each step. The adjacency matrix is supervised with the loss from [13].
The coordinate predictions are Gaussian mixtures with 20 components, super-
vised with the Mixture Density Network [1] formulation. We train this reimple-
mentation of HDMapGen with a batch size of 512, an Adam optimizer, and a
learning rate of 5e−4 for 25 epochs on a single A100.

DiT-L (RSI). We consider a DiT-L diffusion model applied on the 256×256×2
lane flow map of the RSI. In order to accommodate the large pixel grid, we use
a patch size of 16 for the DiT-L tokenization. We clip the predicted samples to
[0, 1] for the DDPM scheduler and use a linear variance schedule from 0.02 to
0.0001 following [6]. We train DiT-L on 4 A100s for two days (approximately
the same compute of training the RVAE and DiT-L RLM variant) with a batch
size of 48. The remaining parameters for training and inference of DiT-L are
according to Section 1.2.
3 https://github.com/lrjconan/GRAN

https://github.com/lrjconan/GRAN
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1.5m Nodes
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Fig. 3: Key Points and Lanes used for Frechet Metrics. We rasterize the graph
generated with the key points and lanes into an RSI for the CNN metrics, and use the
extracted key points for the urban planning metrics.

Generative Metrics. For the assessment of generation performance, we use the
same uniform graph representation of the reconstruction metrics in Section 1.4.
Consequently, we extract a lane representation where nodes with degree unequal
1 are marked as start or endpoints of polylines. As shown in Fig. 3, we extract
individual lines with an analogous logic based on DFS expansions of start points
(see Section 1.4), where we obtain the connectivity between polylines from the
adjacency of the 1.5m nodes. Thereby, we can formulate generative metrics on
lane polylines and key points based on the uniform graph. For the learned Frechet
metrics, we rasterize the lane polylines as an RSI and fill the remaining flow
channels with 0. For ImNet and RVEnc, we encode the RSI (either 3 or 12
color channels) with a ResNet-50 encoder (trained on ImageNet) or the encoder
π of our RVAE. We then calculate the ImNet and RVEnc Frechet distances
(scaled by 103 and 102, respectively). Moreover, we follow the Frechet distances
in [14], namely Connectivity as degree of key points (scaled by 10), Density
as number of key points (not scaled), Reach number available paths from each
key point (not scaled), and Convenience defined as length of available paths
from each key point (scaled by 10). We additionally search the longest path with
DFS in the uniform graph, starting from the node pose closest to (0,0), and
report average length and standard deviation.

1.6 SLEDGE Simulation of PDM-Closed

General. We use the simulation pipeline of nuPlan [2], where the output trajec-
tory of a planner is simulated with a Linear Quadratic Regulator controller [12]
and a kinematic bicycle model [17]. All simulations have a step frequency of 10
Hz. As the planner under test, we use PDM-Closed, with the exact configuration
proposed in [4]. During the ‘Replay’ and ‘Lane→Agent’ simulation, the planner
has access to nuPlan’s map interface. We created a custom map interface for the
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generated lane graph in ‘Lane & Agent’ simulations. We set the speed limit of
generated lanes to 15m/s.

Reactive Agents. All reactive vehicles are projected onto the nearest lane poly-
line and simulated with the Intelligent Driver Model [18]. During initialization,
we discard vehicles if the bounding box overlaps with other agents or is off the
driveable area. However, overlaps may occur over the course of a simulation.
Each vehicle iteratively plans a path, following subsequent lanes with minimum
curvature. We use the same IDM parameters of nuPlan [2] and extend the min-
imum future path length to 30m to facilitate long simulations. If a vehicle is
within α = 64m of distance to the ego center, the future path of the vehicle
is updated (up to 30m), and the vehicle state is propagated according to IDM.
We simulate pedestrians with a constant velocity model, which can lead to un-
common movement during long simulation periods. Thus, we set the simulation
radius of pedestrians to 10m.

Traffic Lights. For the ‘Replay’ simulation, we load the traffic light state of
each lane at the first occurrence. During the ‘Lane→Agent’ and ‘Lane & Agent’
simulation, we match the generated traffic light polyline to the nearest lane
based on an average point-wise Euclidean distance. We flip the traffic lights at
15s intervals to allow the planner to progress naturally. If the nuPlan’s map
interface is available, we further set all traffic lights on an intersection to red
when a lane does not follow the target route.

Simulation Metrics. The Planner Failure Rate (PFR) is based on nuPlan’s
Closed Loop Score (CLS) metric. Specifically, we consider failures as infractions
in multiplier metrics of nuPlan’s CLS based on the same implementation. These
include at-fault collisions, driving off-road, driving in opposite traffic direction
for more than 6m, or staying below 20% of the target progress. The original
nuPlan closed loop score metric assigns a large multiplicative penalty for these
violations. Since both our planner and agent simulation logic are deterministic,
the metrics computed do not vary with different evaluation runs. The metrics
are computed after the simulation is complete. For more details, please see [4].

Termination. We set the simulation duration to 30s and 150s for route lengths
of 100m and 500m, respectively. Restricting the simulation length allows us to
compute the nuPlan metrics without adding additional heuristics (i.e. to deter-
mine when a planner stops progressing due to mistakes). In practice, we find that
a planner has sufficient time to reach the threshold of 20% progress to prevent
a failure with these selected durations.

2 Additional Results

In this section, we provide additional quantitative and qualitative results.

RVAE Ablation Study. As shown in Table 2, We observe a small drop in
performance with a larger encoder. Modifying the RLM size, regularization, and
decoder architecture had no significant impact.
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Table 2: RVAE Ablation Study. The default configuration uses a ResNet-50 en-
coder, 8 × 8 × 64 latent with λKL = 0.1, channel group masking and 6 transformer
decoder layers.

GEO TOPO

Experiment Config F1 ↑ Lat. ↓ Ch. ↓ F1 ↑ Lat. ↓ Ch. ↓

Encoder ResNet-101 0.977 0.172 0.477 0.936 0.302 23.865

RLM
8× 8× 128 0.983 0.158 0.369 0.948 0.276 19.571
32× 32× 4 0.978 0.178 0.489 0.941 0.301 21.460
λKL = 1.0 0.979 0.188 0.446 0.941 0.318 21.499

Decoder No Masking 0.981 0.161 0.399 0.945 0.282 20.096
3 Layers 0.979 0.173 0.425 0.938 0.303 23.789

- Default 0.980 0.164 0.411 0.944 0.288 20.624

Table 3: 64m×64m Lane Graph Generation. Frechet distances between samples
from the validation set and model outputs, based on penultimate feature vectors of
ResNet-50 encoders. We consider variants pre-trained on ImageNet (ImNet) and the
encoder of the RVAE (RVEnc). *Trained with ∼6× more compute than others, which
already converge at the lower compute budget.

Architecture Representation Frechet (CNN) ↓

ImNet RVEnc

VAE RSI 1.77 60.61
RVAE Vector 1.38 28.94

HDMapGen Vector 0.97 23.90

DiT-L RSI 1.00 25.22
RLM 0.66 10.97

DiT-XL* RLM 0.64 9.37

Generative Metrics. In Table 3, we further present the Frechet distances based
on the encoded ground truth and generated lane graphs, with two ResNet-50
encoder. We consider a CNN pre-trained on ImageNet and from the RVAE. DiT-
L as latent diffusion models on the RLM substantially outperforms all methods,
which directly operate on raster or vector presentations. Additional compute
resources and model size in DiT-XL further improves generative quality.

Uncurated Random Samples. We visualize more generated lane graphs for
all approaches in our study (Fig. 4) and additional qualitative results of initial
scene states generated by our final DiT-XL model (Fig. 5).
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Fig. 4: Uncurated Random Samples. We visualize lane graphs generated by the
models from our study, in addition to the samples shown in the main paper.
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Fig. 5: Uncurated Random Samples. We visualize lanes & agents generated by our
final DiT-XL model for 4 cities. Samples from the dataset are included for reference.
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