
MVSplat: Efficient 3D Gaussian Splatting
from Sparse Multi-View Images

Supplementary Material

Yuedong Chen1 �, Haofei Xu2,3 , Chuanxia Zheng4 , Bohan Zhuang1 ,
Marc Pollefeys2,5 , Andreas Geiger3 , Tat-Jen Cham6 , and Jianfei Cai1,6

1Monash University 2ETH Zurich 3University of Tübingen, Tübingen AI Center
4VGG, University of Oxford 5Microsoft 6Nanyang Technological University

donydchen.github.io/mvsplat

A More Experimental Analysis

All experiments in this section follow the same settings as in Sec. 4.3 unless
otherwise specified, which are trained on RealEstate10K [9] and reported by
averaging over the full test set.
Using cost volume in pixelSplat. In the main paper, we have demonstrated
the importance of our cost volume design for learning feed-forward Gaussian
models. We note that such a concept is general and is not specifically designed for
a specific architecture. To verify this, we replace pixelSplat’s probability density-
based depth prediction module with our cost volume-based approach while keep-
ing other components intact. The results shown in Tab. A again demonstrate
the importance of the cost volume by significantly outperforming the original
pixelSplat, indicating the general applicability of our proposed method.

Setup PSNR↑ SSIM↑ LPIPS↓

pixelSplat (w/ probability density depth) [1] 25.89 0.858 0.142
pixelSplat (w/ our MVSplat cost volume depth) 26.63 0.875 0.122

Table A: Using cost volume in pixelSplat. Our cost volume-based depth predic-
tion approach can also be used in the pixelSplat [1] model by replacing its probability
density-based depth branch and its performance can be significantly boosted, which
demonstrates the general applicability of our method.

Ablations on the backbone Transformer. Differing from pixelSplat [1] and
GPNR [6] that are based on the Epipolar Transformer, we adopt Swin Trans-
former [3] in our backbone (i.e., Multi-view feature extraction as in Sec. 3.1).
To compare the Transformer architectures, we conduct ablation experiment by
replacing our Swin Transformer with the Epipolar Transformer in Tab. B. Since
the Swin Transformer does not need to sample points on the epipolar line, where
the sampling process is computationally expensive, our model is more efficient
than the Epipolar Transformer counterpart. Besides, there is no clear difference

https://orcid.org/0000-0003-0943-1512
https://orcid.org/0000-0003-1313-3358
https://orcid.org/0000-0002-3584-9640
https://orcid.org/0000-0002-0074-0303
https://orcid.org/0000-0003-2448-2318
https://orcid.org/0000-0002-8151-3726
https://orcid.org/0000-0001-5264-2572
https://orcid.org/0000-0002-9444-3763
https://donydchen.github.io/mvsplat

2 Y. Chen et al.

Setup Time (s) PSNR↑ SSIM↑ LPIPS↓

MVSplat (w/ Epipolar Transformer [1]) 0.055 26.09 0.865 0.133
MVSplat (w/ Swin Transformer) 0.038 26.12 0.864 0.133

Table B: Comparisons of the backbone Transformer. Our Swin Transformer [3]-
based architecture is more efficient than the Epipolar Transformer counterpart in pix-
elSplat [1] since the expensive epipolar sampling process is avoided. Besides, there is
no clear difference observed in their rendering qualities.

Setup Render Time (s) PSNR↑ SSIM↑ LPIPS↓

MVSplat (1 Gaussian per pixel) 0.0015 26.39 0.869 0.128
MVSplat (3 Gaussians per pixel) 0.0023 26.54 0.872 0.127

Table C: Comparisons of Gaussians’ number per pixel. Increasing the number
of Gaussians improves the performance but slows down the rendering speed.

observed in their rendering qualities, demonstrating the superiority of our Swin
Transformer-based design.
Ablations on the Gaussian numbers per pixel. Unlike pixelSplat that
predicts three Gaussians per image pixel, our MVSplat by default only predicts
one per pixel. However, MVSplat can also benefit from increasing the number of
Gaussians. As reported in Tab. C, our default model can be further boosted by
predicting more Gaussians, but it also impacts the rendering speed. We choose
to predict one Gaussian per pixel to balance performance and rendering speed.
Ablations on backbone initialization. In our implementations, we initialize
our backbone (i.e., Multi-view feature extraction as in Sec. 3.1) with the publicly
available UniMatch [8] pretrained weight1, where its training data has no overlap
with any datasets used in our experiments. However, as reported in Tab. D, our
model can also be trained with random initialization (“w/ random init”) and still
outperforms previous state-of-the-art method pixelSplat [1], whose backbone is
initialized with the weights pretrained on ImageNet with a DINO objective. To
compensate for the lack of a proper initialization, our random initialized model
needs more training iterations (450K) to reach the performance of the UniMatch
initialized model. The results further demonstrate our model’s high efficiency and
effectiveness, where strong performance can still be obtained without relying on
pretraining on large-scale datasets.
Validation curves of the ablations. To better perceive the performance dif-
ference of different ablations, we provide the validation curves throughout the
whole training phase in Fig. A). The cost volume plays a fundamental role in
our full model, and interestingly, the model without cross-view attention suffers
from overfitting after certain training iterations.

1 https://github.com/autonomousvision/unimatch

https://github.com/autonomousvision/unimatch

MVSplat: Supplementary Material 3

Method PSNR↑ SSIM↑ LPIPS↓

pixelSplat w/ DINO init (300K) [1] 25.89 0.858 0.142

MVSplat w/ UniMatch init (300K) 26.39 0.869 0.128
MVSplat w/ random init (300K) 26.01 0.863 0.133
MVSplat w/ random init (450K) 26.29 0.868 0.128

Table D: Comparisons of backbone initialization. By default we train our models
for 300K iterations with the publicly available UniMatch pretrained weights as initial-
ization. However, our model can also be trained with random initialization (“w/ random
init”) and still outperforms previous state-of-the-art method pixelSplat. The random
initialized model needs more training iterations (450K) to reach the performance of
the UniMatch initialized model.

PSNR ↑ SSIM ↑ LPIPS ↓

Setup: w/o cross-view attentionbase + refine base w/o U-Net w/o cost volume

Fig.A: Validation curves of the ablations. The setup of each model is illustrated
on the top, which refers to the same one as in Tab. 3 of the main paper. The cost volume
plays a fundamental role in our full model, and interestingly, the model without cross-
view attention suffers from over-fitting after certain training iterations.

Input MVSplat Ground Truth Error Map Input MVSplat Ground Truth Error Map

Fig. B: Failure cases. Our MVSplat might be less effective on the non-Lambertian
and reflective surfaces.

Limitation. Our MVSplat might be less effective on non-Lambertian and re-
flective surfaces, as shown in Fig. B. Integrating the rendering with additional
BRDF properties and training the model with more diverse datasets might be
helpful for addressing this issue in the future.
Potential negative societal impacts. Our model may produce unreliable
outcomes, particularly when applied to complex real-world scenes. Therefore, it
is imperative to exercise caution when implementing our model in safety-critical

4 Y. Chen et al.

Input Views pixelSplat MVSplat Ground TruthMuRF

Fig. C: More comparisons with the state of the art. These are the extended
visual results of Fig. 3. Scenes of the first four rows come from the RealEstate10K,
whilst scenes of the last two rows come from ACID. Our MVSplat performs the best
in all cases.

situations, e.g ., when augmenting data to train models for autonomous vehicles
with synthetic data rendered from our model.

B More Visual Comparisons

In this section, we provide more qualitative comparisons of our MVSplat with
state-of-the-art methods on the RealEstate10K and ACID in Fig. C. We also
provide more comparisons with our main comparison model pixelSplat [1] re-
garding geometry reconstruction (see Fig. D) and cross-dataset generalizations

MVSplat: Supplementary Material 5

pixelSplat pixelSplat MVSplatMVSplat

Fig.D: More comparisons of 3D Gaussians (top) and depth maps (bottom).
These are the extended visual results of Fig. 4. Extra depth-regularized fine-tuning is
not applied to either model. 3D Gaussians and depth maps predicted by our MVSplat
are both of higher quality than those predicted by pixelSplat.

Input pixelSplat MVSplat Ground Truth

Cross-Dataset Generalization: RE10K → ACID

Input pixelSplat MVSplat Ground Truth

Cross-Dataset Generalization: RE10K → DTU

Fig. E: More comparisons of cross-dataset generalization. These are the ex-
tended visual results of Fig. 5. By training on indoor scenes (RealEstate10K), our
MVSplat generalizes much better than pixelSplat to outdoor scenes (ACID) and object-
centric scenes (DTU), showing the superior of our cost volume-based architecture.

(see Fig. E). Besides, readers are referred to the project page for the rendered
videos and 3D Gaussians models (provided in “.ply” format).

6 Y. Chen et al.

C More Implementation Details

Network architectures. Our shallow ResNet-like CNN is composed of 6 resid-
ual blocks [2], In the last 4 blocks, the feature is down-sampled to half after every
2 consecutive blocks by setting the convolution stride to 2, resulting in overall
4× down sampling. The following Transformer consists of 6 stacked Transformer
blocks, each of which contains one self-attention layer followed by one cross-
attention layer. Swin Transformer’s [3] local window attention is used and the
features are split into 2 × 2 in all our experiments. For the cost volume refine-
ment, we adopt the 2D U-Net implementations from [4]. We keep the channel
dimension unchanged throughout the U-Net as 128, and apply 2 times of 2×
down-sampling, with an additional self-attention layer at the 4× down-sampled
level. Inspired by existing multi-view based models [5,7], we also flatten the fea-
tures before applying self-attention, allowing information to propagate among
different cost volumes. The following depth refinement U-Net also shares a sim-
ilar configuration, except that we apply 4 times of 2× down-sampling and add
attentions at the 16× down-sampled level.
More training details. As aforementioned, we initialize the backbone of MVS-
plat in all experiments with the UniMatch [8] pretrained weight. Our default
model is trained on a single A100 GPU. The batch size is set to 14, where each
batch contains one training scene, including two input views and four target
views. Similar to pixelSplat [1], the frame distance between two input views
is gradually increased as the training progressed. For both RealEstate10K and
ACID, we empirically set the near and far depth plane to 1 and 100, respectively,
while for DTU, we set them to 2.125 and 4.525 as provided by the dataset.

References

1. Charatan, D., Li, S., Tagliasacchi, A., Sitzmann, V.: pixelsplat: 3d gaussian splats
from image pairs for scalable generalizable 3d reconstruction. In: CVPR (2024)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

3. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

4. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022)

5. Shi, Y., Wang, P., Ye, J., Long, M., Li, K., Yang, X.: Mvdream: Multi-view diffusion
for 3d generation. ICLR (2024)

6. Suhail, M., Esteves, C., Sigal, L., Makadia, A.: Generalizable patch-based neural
rendering. In: ECCV (2022)

7. Tang, J., Chen, Z., Chen, X., Wang, T., Zeng, G., Liu, Z.: Lgm: Large multi-view
gaussian model for high-resolution 3d content creation. arXiv (2024)

8. Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Yu, F., Tao, D., Geiger, A.: Unifying
flow, stereo and depth estimation. PAMI (2023)

9. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning
view synthesis using multiplane images. TOG p. 65 (2018)

	MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images Supplementary Material

