\begin{tabular}{c | c | c | c | c | c | c | c}
{\bf Method} & {\bf Setting} & {\bf SILog} & {\bf sqErrorRel} & {\bf absErrorRel} & {\bf iRMSE} & {\bf Runtime} & {\bf Environment}\\ \hline
G2I &  &  7.34 &  0.93 \% &  6.01 \% &  7.37 & 0.1 s / 1 core  & \\
×Net &  &  7.51 &  0.93 \% &  6.14 \% &  7.62 & 0.1 s / 1 core  & \\
UniDepthV2 &  &  7.74 &  0.91 \% &  5.53 \% &  7.19 & 0.1 s / GPU  & \\
UniDepth &  &  8.13 &  1.09 \% &  6.54 \% &  8.24 & 0.1 s / GPU  & L. Piccinelli, Y. Yang, C. Sakaridis, M. Segu, S. Li, L. Van Gool and F. Yu:  UniDepth: Universal Monocular Metric 
Depth Estimation. IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) 2024.\\
HyperDepth &  &  9.16 &  1.55 \% &  7.70 \% & 10.15 & 0.1 s / 1 core  & \\
RegDepth &  &  9.19 &  1.55 \% &  7.71 \% & 10.18 & 0.1 s / 1 core  & \\
MSFusion &  &  9.37 &  1.51 \% &  7.62 \% & 10.15 & 0.1 s / 1 core  & L. Bie, S. Li, X. Zhong, Z. Wu and Y. Gao:  Multi-space Representation Fusion 
Enhanced Monocular Depth Estimation via Virtual 
Point Cloud. ACM Trans. 
Multimedia Comput. Commun. Appl. 2025.\\
DCDepth &  &  9.60 &  1.54 \% &  7.83 \% & 10.12 & 0.07 s / 1 core  & K. Wang, Z. Yan, J. Fan, W. Zhu, X. Li, J. Li and J. Yang:  DCDepth: Progressive Monocular Depth Estimation in Discrete Cosine Domain. Advances in Neural Information Processing Systems (NeurIPS) 2024.\\
NDDepth &  &  9.62 &  1.59 \% &  7.75 \% & 10.62 & 0.1s  / GPU  & S. Shao, Z. Pei, W. Chen, X. Wu and Z. Li:  NDDepth: Normal-Distance Assisted 
Monocular Depth Estimation. International Conference on Computer 
Vision (ICCV) 2023.\\
IEBins &  &  9.63 &  1.60 \% &  7.82 \% & 10.68 & 0.1s / GPU  & S. Shao, Z. Pei, X. Wu, Z. Liu, W. Chen and Z. Li:  IEBins: Iterative Elastic Bins for 
Monocular Depth Estimation. Advances in Neural Information 
Processing Systems (NeurIPS) 2023.\\
VA-DepthNet &  &  9.84 &  1.66 \% &  7.96 \% & 10.44 & 0.1 s / 1 core  & C. Liu, S. Kumar, S. Gu, R. Timofte and L. Van Gool:  VA-DepthNet: A Variational Approach to Single Image Depth Prediction. International Conference on Learning Representations (ICLR) 2023.\\
DiffusionDepth-I &  &  9.85 &  1.64 \% &  8.06 \% & 10.58 & 0.2 s / 1 core  & Y. Duan, X. Guo and Z. Zhu:  Diffusiondepth: Diffusion denoising 
approach for monocular depth estimation. arXiv preprint arXiv:2303.05021 2023.\\
iDisc &  &  9.89 &  1.77 \% &  8.11 \% & 10.73 & 0.1 s / 1 core  & L. Piccinelli, C. Sakaridis and F. Yu:  iDisc: Internal Discretization for Monocular 
Depth Estimation. IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2023.\\
MG &  &  9.93 &  1.68 \% &  7.99 \% & 10.63 & 0.1 s / 1 core  & C. Liu, S. Kumar, S. Gu, R. Timofte and L. Van Gool:  Single Image Depth Prediction Made Better: A Multivariate Gaussian Take. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023.\\
URCDC-Depth &  & 10.03 &  1.74 \% &  8.24 \% & 10.71 & 0.1 s / 1 core  & S. Shao, Z. Pei, W. Chen, R. Li, Z. Liu and Z. Li:  URCDC-Depth: Uncertainty Rectified 
Cross-Distillation with CutFlip for Monocular 
Depth Estimation. IEEE Transactions on Multimedia 
(TMM) 2023.\\
BinsFormer &  & 10.14 &  1.69 \% &  8.23 \% & 10.90 & 0.1 s / 1 core  & Z. Li, X. Wang, X. Liu and J. Jiang:  BinsFormer: Revisiting Adaptive Bins for 
Monocular Depth Estimation. arXiv preprint arXiv:2204.00987 2022.\\
TrapNet &  & 10.15 &  1.66 \% &  7.92 \% & 10.45 & 0.1 s / 1 core  & C. Ning and H. Gan:  Trap Attention: Monocular Depth Estimation 
with Manual Traps. Proceedings of the IEEE/CVF 
International Conference on Computer Vision and 
Pattern Recognition 2023.\\
PixelFormer &  & 10.28 &  1.82 \% &  8.16 \% & 10.84 & 0.1 s / 1 core  & A. Agarwal and C. Arora:  Attention Attention Everywhere: Monocular Depth Prediction 
with Skip Attention. WACV 2023.\\
RED-T &  & 10.36 &  1.92 \% &  8.11 \% & 10.82 & 0.1 s / GPU  & K. Shim, J. Kim, G. Lee and B. Shim:  Depth-Relative Self Attention for Monocular 
Depth Estimation. 2023.\\
NeWCRFs &  & 10.39 &  1.83 \% &  8.37 \% & 11.03 & 0.1 s / 1 core  & W. Yuan, X. Gu, Z. Dai, S. Zhu and P. Tan:  NeWCRFs: Neural Window Fully-connected 
CRFs for Monocular Depth Estimation. Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2022.\\
DepthFormer &  & 10.69 &  1.84 \% &  8.68 \% & 11.39 & 0.1 s / 1 core  & Z. Li, Z. Chen, X. Liu and J. Jiang:  Depthformer: Exploiting long-range 
correlation and local information for accurate 
monocular depth estimation. arXiv preprint arXiv:2203.14211 2022.\\
ViP-DeepLab &  & 10.80 &  2.19 \% &  8.94 \% & 11.77 & 0.1 s / GPU  & S. Qiao, Y. Zhu, H. Adam, A. Yuille and L. Chen:  ViP-DeepLab: Learning Visual Perception 
with Depth-aware Video Panoptic Segmentation. Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2021.\\
SideRT &  & 11.42 &  2.25 \% &  9.28 \% & 11.88 & 0.02 s / GPU  & C. Shu, Z. Chen, L. Chen, K. Ma, M. Wang and H. Ren:  SideRT: A Real-time Pure Transformer 
Architecture for Single Image Depth Estimation. 2022.\\
PWA &  & 11.45 &  2.30 \% &  9.05 \% & 12.32 & 0.06 s / GPU  & S. Lee, J. Lee, B. Kim, E. Yi and J. Kim:  Patch-Wise Attention Network for Monocular 
Depth Estimation. Proceedings of the AAAI Conference on 
Artificial Intelligence 2021.\\
BANet &  & 11.55 &  2.31 \% &  9.34 \% & 12.17 & 0.04 s / GPU  & S. Aich, J. Vianney, M. Islam, M. Kaur and B. Liu:  Bidirectional Attention Network for 
Monocular Depth Estimation. IEEE International Conference on 
Robotics and Automation (ICRA) 2021.\\
BTS &  & 11.67 &  2.21 \% &  9.04 \% & 12.23 & 0.06 s / GPU  & J. Lee, M. Han, D. Ko and I. Suh:  From Big to Small: Multi-Scale 
Local Planar Guidance for Monocular Depth 
Estimation. 2019.\\
DL\_61 (DORN) &  & 11.77 &  2.23 \% &  8.78 \% & 12.98 & 0.5 s / GPU  & H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao:  Deep Ordinal Regression Network for Monocular 
Depth Estimation. IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2018.\\
RefinedMPL &  & 11.80 &  2.31 \% & 10.09 \% & 13.39 & 0.05 s / GPU  & J. Vianney, S. Aich and B. Liu:  RefinedMPL: Refined Monocular 
PseudoLiDAR for 3D Object Detection in 
Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.\\
DLE &  & 11.81 &  2.22 \% &  9.09 \% & 12.49 & 0.09 s /  & C. Liu, S. Gu, L. Gool and R. Timofte:  Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.\\
PFANet &  & 11.84 &  2.46 \% &  9.23 \% & 12.63 & 0.1 s / GPU  & Y. Xu, C. Peng, M. Li, Y. Li and S. Du:  Pyramid Feature Attention Network for Monocular 
Depth Prediction. 2021 IEEE International 
Conference on Multimedia and Expo (ICME) 2021.\\
GAC &  & 12.13 &  2.61 \% &  9.41 \% & 12.65 & 0.05 s / GPU  & Y. Liu, Y. Yuan and M. Liu:  Ground-aware Monocular 3D Object Detection 
for Autonomous Driving. IEEE Robotics and Automation Letters 2021.\\
DL\_SORD\_SL &  & 12.39 &  2.49 \% & 10.10 \% & 13.48 & 0.8 s / GPU  & R. Diaz and A. Marathe:  Soft Labels for Ordinal Regression. The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2019.\\
VNL &  & 12.65 &  2.46 \% & 10.15 \% & 13.02 & 0.5 s / 1 core  & Y. Wei, Y. Liu, C. Shen and Y. Yan:  Enforcing geometric constraints of 
virtual normal for depth prediction. 2019.\\
P3Depth &  & 12.82 &  2.53 \% &  9.92 \% & 13.71 & 0.1 s / GPU  & V. Patil, C. Sakaridis, A. Liniger and L. Van Gool:  P3Depth: Monocular Depth Estimation 
with a Piecewise Planarity Prior. Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2022.\\
MS-DPT &  & 12.83 &  3.62 \% & 11.01 \% & 13.43 & 0.1 s / GPU  & J. Song and S. Lee:  Knowledge Distillation of Multi-scale Dense Prediction Transformer for Self-supervised Depth Estimation. 2023.\\
DS-SIDENet\_ROB &  & 12.86 &  2.87 \% & 10.03 \% & 14.40 & 0.35 s / GPU  & H. Ren, M. El-Khamy and J. Lee:  Deep Robust Single Image Depth Estimation Neural Network Using Scene Understanding. IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) 2019.\\
DL\_SORD\_SQ &  & 13.00 &  2.95 \% & 10.38 \% & 13.78 & 0.88 s / GPU  & R. Diaz and A. Marathe:  Soft Labels for Ordinal Regression. The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2019.\\
PAP &  & 13.08 &  2.72 \% & 10.27 \% & 13.95 & 0.18 s / GPU  & Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe and J. Yang:  Pattern-Affinitive Propagation Across Depth, Surface Normal and Semantic Segmentation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.\\
CADepth-Net &  & 13.34 &  3.33 \% & 10.67 \% & 13.61 & 0.08 s / 1 core  & J. Yan, H. Zhao, P. Bu and Y. Jin:  Channel-Wise Attention-Based Network 
for Self-Supervised Monocular Depth Estimation. 2021.\\
VGG16-UNet &  & 13.41 &  2.86 \% & 10.60 \% & 15.06 & 0.16 s / GPU  & X. Guo, H. Li, S. Yi, J. Ren and X. Wang:  Learning monocular depth by distilling 
cross-domain stereo networks. Proceedings of the European Conference 
on Computer Vision (ECCV) 2018.\\
DORN\_ROB &  & 13.53 &  3.06 \% & 10.35 \% & 15.96 & 2 s / GPU  & H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao:  Deep Ordinal Regression Network for Monocular 
Depth Estimation. IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2018.\\
g2s &  & 14.16 &  3.65 \% & 11.40 \% & 15.53 & 0.04 s / GPU  & H. Chawla, A. Varma, E. Arani and B. Zonooz:  Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation. 2021 IEEE International Conference on Robotics and Automation (ICRA) 2021.\\
MT-SfMLearner &  & 14.25 &  3.72 \% & 12.52 \% & 15.83 & 0.04s / GPU  & A. Varma., H. Chawla., B. Zonooz. and E. Arani.:  Transformers in Self-Supervised Monocular Depth Estimation with Unknown Camera Intrinsics. Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, 2022.\\
MLDA-Net &  & 14.42 &  3.41 \% & 11.67 \% & 16.12 & 0.2 s / 1 core  & X. Song, W. Li, D. Zhou, Y. Dai, J. Fang, H. Li and L. Zhang:  MLDA-Net: Multi-Level Dual Attention-Based 
Network for Self-Supervised Monocular Depth 
Estimation. IEEE Transactions on Image Processing 2021.\\
DABC\_ROB &  & 14.49 &  4.08 \% & 12.72 \% & 15.53 & 0.7 s / GPU  & R. Li, K. Xian, C. Shen, Z. Cao, H. Lu and L. Hang:  Deep attention-based classification 
network for robust depth prediction. Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2018.\\
BTSREF\_RVC &  & 14.67 &  3.12 \% & 12.42 \% & 16.84 & 0.1 s / 1 core  & J. Lee, M. Han, D. Ko and I. Suh:  From big to small: Multi-scale local planar 
guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 2019.\\
SDNet &  & 14.68 &  3.90 \% & 12.31 \% & 15.96 & 0.2 s / GPU  & M. Ochs, A. Kretz and R. Mester:  SDNet: Semantic Guided Depth 
Estimation Network. German Conference on Pattern 
Recognition (GCPR) 2019.\\
APMoE\_base\_ROB &  & 14.74 &  3.88 \% & 11.74 \% & 15.63 & 0.2 s / GPU  & S. Kong and C. Fowlkes:  Pixel-wise Attentional Gating for 
Parsimonious Pixel Labeling. arxiv 1805.01556 2018.\\
DiPE &  & 14.84 &  4.04 \% & 12.28 \% & 15.69 & 0.01 s / GPU  & H. Jiang, L. Ding, Z. Sun and R. Huang:  DiPE: Deeper into Photometric Errors for 
Unsupervised Learning of Depth and Ego-motion from 
Monocular Videos. In IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS) 2020.\\
CSWS\_E\_ROB &  & 14.85 &  3.48 \% & 11.84 \% & 16.38 & 0.2 s / 1 core  & M. Bo Li:  Monocular Depth Estimation with Hierarchical 
Fusion of  Dilated CNNs and Soft-Weighted-Sum Inference. 2018.\\
R-MSFM &  & 15.09 &  3.57 \% & 11.80 \% & 17.60 & 1 s / 1 core  & Z. Zhou, X. Fan, P. Shi and Y. Xin:  R-msfm: Recurrent multi-scale feature 
modulation for monocular depth estimating. Proceedings of the IEEE/CVF 
international conference on computer vision 2021.\\
HBC &  & 15.18 &  3.79 \% & 12.33 \% & 17.86 & 0.05 s / GPU  & H. Jiang and R. Huang:  Hierarchical Binary Classification
for Monocular Depth Estimation. IEEE International Conference on 
Robotics and Biomimetics 2019.\\
SGDepth &  & 15.30 &  5.00 \% & 13.29 \% & 15.80 & 0.1 s / GPU  & M. Klingner, J. Termöhlen, J. Mikolajczyk and T. Fingscheidt:  Self-Supervised Monocular Depth 
Estimation: Solving the Dynamic Object Problem by 
Semantic Guidance. ECCV 2020.\\
DHGRL &  & 15.47 &  4.04 \% & 12.52 \% & 15.72 & 0.2 s / GPU  & Z. Zhang, C. Xu, J. Yang, Y. Tai and L. Chen:  Deep hierarchical guidance and regularization 
learning for end-to-end depth estimation. Pattern Recognition 2018.\\
GCNDepth &  & 15.54 &  4.26 \% & 12.75 \% & 15.99 & 0.05 s / GPU  & A. Masoumian, H. Rashwan, S. Abdulwahab, J. Cristiano and D. Puig:  GCNDepth: Self-supervised Monocular Depth 
Estimation based on Graph Convolutional Network. arXiv preprint arXiv:2112.06782
 2021.\\
packnSFMHR\_RVC &  & 15.80 &  4.73 \% & 12.28 \% & 17.96 & 0.5 s / GPU  & V. Guizilini, R. Ambrus, S. Pillai, A. Raventos and A. Gaidon:  3D Packing for Self-Supervised 
Monocular Depth Estimation. IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) .\\
MultiDepth &  & 16.05 &  3.89 \% & 13.82 \% & 18.21 & 0.01 s / GPU  & L. Liebel and M. Körner:  MultiDepth: Single-Image Depth Estimation via Multi-Task Regression and Classification. IEEE Intelligent Transportation Systems Conference (ITSC) 2019.\\
LSIM &  & 17.92 &  6.88 \% & 14.04 \% & 17.62 & 0.08 s / GPU  & M. Goldman, T. Hassner and S. Avidan:  Learn Stereo, Infer Mono: Siamese Networks for 
Self-Supervised, Monocular, Depth Estimation. Computer Vision and Pattern Recognition 
Workshops (CVPRW) 2019.
\end{tabular}