Implicit Neural Representations: From Objects to 3D Scenes

Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

June 19, 2020

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Collaborators

Songyou Peng

Michael Oechsle

Carolin Schmitt

Michael Niemeyer

Lars Mescheder

Simon Donne

Gernot Riegler

Vladlen Koltun

Marc Pollefeys

Andreas Geiger

3D Representations

- ► Traditional Explicit Representations ⇒ **Discrete**
- ► Implicit Neural Representation ⇒ **Continuous**

Limitations

Structure of implicit neural representations:

- Global latent code \Rightarrow no local information, overly smooth geometry
- Fully connected architecture \Rightarrow does not exploit translation equivariance

Limitations

Implicit models work well for simple objects but poorly on complex scenes:

How to reconstruct large-scale 3D scenes with implicit neural representations?

Convolutional Occupancy Networks

Convolutional Occupancy Networks

- ▶ 2D Plane Encoder: Local PointNet processes input, project onto canonical plane
- ► 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Convolutional Occupancy Networks

- ► 3D Volume Encoder: Local PointNet processes input, volumetric feature encoding
- ► 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interp.
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Comparison

Results

Object-Level Reconstruction

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.

Training Speed

Training Speed

Scene-Level Reconstruction

► Trained and evaluated on synthetic rooms

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.

Scene-Level Reconstruction

Input

ONet

SPSR

Ours

► Trained on synthetic rooms, evaluated on **ScanNet**

Large-Scale Reconstruction

Results on Matterport3D

- ► Fully convolutional model
- ► Trained on synthetic crops
- ► Sliding window evaluation
- ► Scales to any scene size

Key Insights

Key Insights:

- Convolutional models allow for scaling implicit models to larger scenes
- Convolutional models train faster than fully implicit models
- ► Convolutional models allow for incorporating local feature information
- ► For objects, the 3-plane model has the best accuracy/memory trade-off
- ► For scenes, the volumetric representation performs best
- Models transfer from synthetic to real scenes

How to capturing the visual appearance of objects?

Conditional Surface Light Fields

Problem Definition

Existing Representation

Texture Fields

- ► 3D consistent
- ► Generalize across objects
- ► View-point independent
- ► Do not model lighting

Conditional Surface Light Field

Rendering equation:

$$L(\mathbf{p}, \mathbf{v}, \mathbf{l}, \mathbf{n}) = \int_{\Omega} \text{svBRDF}(\mathbf{p}, \mathbf{r}, \mathbf{v}) \cdot \mathbf{l}(\mathbf{r}) \cdot (\mathbf{n}^{T} \mathbf{r}) \ d\mathbf{r}$$

Conditional surface light field:

$$L_{\text{cSLF}}(\mathbf{p}, \mathbf{v}, \mathbf{l}) : \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^M \to \mathbb{R}^3$$

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.

Overfitting to Single Objects

Single-Image Appearance Prediction

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.

Generative Model

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.

How to obtain training data with materials?

Joint Estimation of Pose, Geometry and svBRDF

Goal: Dataset of 3D indoor scenes

captured with high accuracy from a handheld mobile sensor.

Custom built sensor rig:

- Custom IR depth sensor similar to Microsoft Kinect
- Active illumination + RGB camera for material estimation

$\mathsf{Materials}\longleftrightarrow\mathsf{Geometry}$

- \rightarrow Accurate geometry reconstruction requires known appearance properties
- ← Accurate appearance estimation requires very well known geometry
- \longleftrightarrow Joint estimation requires **only a rough initialization** for both

Contributions:

- ► Joint formulation
- Single objective function minimized using off-the-shelf gradient-based solvers
- Meaningful segmentation

differentiably part of the optimization

 Accurate geometry with very fine details

$$\mathcal{X}^* = \operatorname*{argmin}_{\mathcal{X}} \quad \mathcal{L}(\mathcal{X})$$

Contributions:

- ► **Joint** formulation
- Single objective function minimized using off-the-shelf gradient-based solvers
- Meaningful segmentation differentiably part of the optimization
- Accurate geometry with very fine details

Reconstruction

Segmentation

Contributions:

- ► **Joint** formulation
- Single objective function minimized using off-the-shelf gradient-based solvers
- Meaningful segmentation differentiably part of the optimization
- Accurate geometry with very fine details

Qualitative Results

Relighting

Novel Viewpoint

Conclusion:

- ► Joint estimation helps
- ► This is only a first step
- Object-level reconstruction remains challenging with limited observations
- Scaling to larger scenes
- Scaling to scenes with external illumination

How to obtain training data with semantic labels?

KITTI-360

KITTI-360

KITTI-360

Sensors:

- ► Front-facing stereo camera
- ► 360° fisheye cameras
- ► Velodyne HDL 64 laser scanner
- ► SICK pushbroom laser scanner
- ► IMU/GPS localization system

Features:

- ► Driving distance: **73.7 km** Frames: **4** × **83,000**
- ► All frames accurately **geolocalized** (⇒ OpenStreetMap)
- ► Semantic label definition consistent with Cityscapes, **19 classes** for evaluation
- ► Each instance assigned with a **consistent instance ID** across all frames

Sensors

360° 2D Sensors

360° 3D Sensors

3D Annotations

RGB

Instance

2D Annotations

Semantic

Instance

Confidence

Bounding Box

Thank you!

http://autonomousvision.github.io

