Implicit Neural Representations: From Objects to 3D Scenes

Andreas Geiger

Autonomous Vision Group
University of Tübingen / MPI for Intelligent Systems Tübingen
June 19, 2020

University of Tübingen
MPI for Intelligent Systems
Autonomous Vision Group

Collaborators

Simon
Donne

Michael Oechsle

Gernot Riegler

Carolin
Schmitt

Vladlen
Koltun

Michael Niemeyer

Marc
Pollefeys

Andreas Geiger

3D Representations

- Traditional Explicit Representations \Rightarrow Discrete
- Implicit Neural Representation \Rightarrow Continuous

Limitations

Structure of implicit neural representations:

- Global latent code \Rightarrow no local information, overly smooth geometry
- Fully connected architecture \Rightarrow does not exploit translation equivariance

Limitations

Implicit models work well for simple objects but poorly on complex scenes:

How to reconstruct large-scale 3D scenes with implicit neural representations?

Convolutional Occupancy Networks

Convolutional Occupancy Networks

- 2D Plane Encoder: Local PointNet processes input, project onto canonical plane
- 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Convolutional Occupancy Networks

- 3D Volume Encoder: Local PointNet processes input, volumetric feature encoding
- 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interp.
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Comparison

Occupancy Networks

Results

Object-Level Reconstruction

Input

ONet

Ours

GT

Training Speed

Training Speed

Scene-Level Reconstruction

- Trained and evaluated on synthetic rooms

Scene-Level Reconstruction

- Trained on synthetic rooms, evaluated on ScanNet

Large-Scale Reconstruction

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding window evaluation
- Scales to any scene size

Key Insights

Key Insights:

- Convolutional models allow for scaling implicit models to larger scenes
- Convolutional models train faster than fully implicit models
- Convolutional models allow for incorporating local feature information
- For objects, the 3-plane model has the best accuracy/memory trade-off
- For scenes, the volumetric representation performs best
- Models transfer from synthetic to real scenes

How to capturing the visual appearance of objects?

Conditional Surface Light Fields

Problem Definition

Existing Representation

Texture Fields

- 3D consistent
- Generalize across objects
- View-point independent
- Do not model lighting

Conditional Surface Light Field

Rendering equation:

$$
L(\mathbf{p}, \mathbf{v}, \mathbf{l}, \mathbf{n})=\int_{\Omega} \operatorname{svBRDF}(\mathbf{p}, \mathbf{r}, \mathbf{v}) \cdot \mathbf{l}(\mathbf{r}) \cdot\left(\mathbf{n}^{T} \mathbf{r}\right) d \mathbf{r}
$$

Conditional surface light field:

$$
L_{\mathrm{CSLF}}(\mathbf{p}, \mathbf{v}, \mathbf{l}): \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{M} \rightarrow \mathbb{R}^{3}
$$

Overfitting to Single Objects

Single-Image Appearance Prediction

Generative Model

How to obtain training data with materials?

Joint Estimation of Pose, Geometry and svBRDF

Joint Estimation of Pose, Geometry and svBRDF

Goal: Dataset of 3D indoor scenes

captured with high accuracy
from a handheld mobile sensor.

Custom built sensor rig:

- Custom IR depth sensor similar to Microsoft Kinect
- Active illumination + RGB camera for material estimation

Joint Estimation of Pose, Geometry and svBRDF

Materials \longleftrightarrow Geometry

$\longrightarrow \quad$ Accurate geometry reconstruction requires known appearance properties
\qquad Accurate appearance estimation requires very well known geometry
\longleftrightarrow Joint estimation requires only a rough initialization for both

Input RGB

Initial Depth and Appearance

Refined Geometry, Normals and Appearance

Joint Estimation of Pose, Geometry and svBRDF

Contributions:

- Joint formulation
- Single objective function
minimized using off-the-shelf gradient-based solvers
- Meaningful segmentation

differentiably part of the optimization
- Accurate geometry

$$
\mathcal{X}^{*}=\underset{\mathcal{X}}{\operatorname{argmin}} \mathcal{L}(\mathcal{X})
$$ with very fine details

Joint Estimation of Pose, Geometry and svBRDF

Contributions:

- Joint formulation
- Single objective function minimized using off-the-shelf gradient-based solvers
- Meaningful segmentation differentiably part of the optimization
- Accurate geometry with very fine details

Reconstruction

Segmentation

Joint Estimation of Pose, Geometry and svBRDF

Contributions:

- Joint formulation
- Single objective function minimized using off-the-shelf gradient-based solvers
- Meaningful segmentation differentiably part of the optimization
- Accurate geometry with very fine details

Qualitative Results

Relighting

Conclusion:

- Joint estimation helps
- This is only a first step
- Object-level reconstruction remains challenging with limited observations
- Scaling to larger scenes
- Scaling to scenes with external illumination

How to obtain training data with semantic labels?

KITTI-360

KITTI-360

KITTI-360

Sensors:

- Front-facing stereo camera
- 360° fisheye cameras
- Velodyne HDL 64 laser scanner
- SICK pushbroom laser scanner
- IMU/GPS localization system

Features:

- Driving distance: $\mathbf{7 3 . 7} \mathbf{~ k m} \quad$ Frames: $\mathbf{4} \times \mathbf{8 3 , 0 0 0}$
- All frames accurately geolocalized (\Rightarrow OpenStreetMap)
- Semantic label definition consistent with Cityscapes, 19 classes for evaluation
- Each instance assigned with a consistent instance ID across all frames

Sensors

$360^{\circ} 2 \mathrm{D}$ Sensors

360° 3D Sensors

3D Annotations

RGB

Semantic

Bounding Box

Instance

2D Annotations

Semantic

Confidence

Instance

Bounding Box

Thank you!

http://autonomousvision.github.io

Microsoft ${ }^{*}$ Research

ПVIDIA

