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3D Representations

» Traditional Explicit Representations = Discrete

» Implicit Neural Representation = Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.



Limitations

Structure of implicit neural representations:
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» Global latent code = no local information, overly smooth geometry

» Fully connected architecture = does not exploit translation equivariance

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.



Limitations

Implicit models work well for simple objects but poorly on complex scenes:
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Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.



How to reconstruct large-scale 3D scenes with
implicit neural representations?

Convolutional Occupancy Networks




Convolutional Occupancy Networks
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» 2D Plane Encoder: Local PointNet processes input, project onto canonical plane
» 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation

» Occupancy Readout: Shallow occupancy network fy(-)

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



Convolutional Occupancy Networks
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» 3D Volume Encoder: Local PointNet processes input, volumetric feature encoding
» 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interp.

» Occupancy Readout: Shallow occupancy network fy(-)

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



Comparison
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



Results




Object-Level Reconstruction
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



Training Speed
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.
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Training Speed
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.




Scene-Level Reconstruction

» Trained and evaluated on synthetic rooms

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



Scene-Level Reconstruction

Input ONet SPSR

» Trained on synthetic rooms, evaluated on ScanNet

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



Large-Scale Reconstruction

Room-Level
Reconstruction

Results on Matterport3D
» Fully convolutional model
» Trained on synthetic crops
» Sliding window evaluation

» Scales to any scene size

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.




Key Insights

Key Insights:
» Convolutional models allow for scaling implicit models to larger scenes
Convolutional models train faster than fully implicit models

Convolutional models allow for incorporating local feature information

>
>
» For objects, the 3-plane model has the best accuracy/memory trade-off
» For scenes, the volumetric representation performs best

>

Models transfer from synthetic to real scenes

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020.



How to capturing the visual appearance of objects?

Conditional Surface Light Fields




Problem Definition

Manipulating the lllumination
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.



Existing Representation

Texture Fields
» 3D consistent
» Generalize across objects
» View-point independent

» Do not model lighting

3D Model
‘ w\ ] Textured 3D Model
Texture Field
2D Image

[Oechsle et al., ICCV 2019]

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.



Conditional Surface Light Field

Rendering equation:
L(p,v,Iin) = / sVBRDF(p,r,v) - 1(r) - (n’r
Q
Conditional surface light field:
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Light setting

-

A View direction

'l

Y

° —>  Neural Network J—»

3D Point
P

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.
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Overfitting to Single Objects
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020 19



Single-lImage Appearance Prediction
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.
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Generative Model
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020.
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How to obtain training data with materials?

Joint Estimation of Pose, Geometry and svBRDF




Joint Estimation of Pose, Geometry and svBRDF

Goal: Dataset of 3D indoor scenes
captured with high accuracy
from a handheld mobile sensor.

Custom built sensor rig:

» Custom IR depth sensor
similar to Microsoft Kinect

» Active illumination + RGB camera
for material estimation

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020.
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Joint Estimation of Pose, Geometry and svBRDF

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020.
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Materials «+— Geometry

— Accurate geometry reconstruction requires known appearance properties
+— Accurate appearance estimation requires very well known geometry

+— Joint estimation requires only a rough initialization for both
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Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020.
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Joint Estimation of Pose, Geometry and svBRDF

Contributions:
» Joint formulation X : [R|t1
. . . . -

> Slngle Objectlve funCtlon Geometry Normals Appearance Camera Poses
minimized using off-the-shelf
gradient-based solvers

» Meaningful segmentation Diffuse Specular
differentiably part of the optimization
» Accurate geometry X = argfvnin L(X)

with very fine details

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 25



Joint Estimation of Pose, Geometry and svBRDF

Contributions:
» Joint formulation

> Single objective function
minimized using off-the-shelf
gradient-based solvers

» Meaningful segmentation
differentiably part of the optimization

> Accurate geometry
with very fine details

Reconstruction Segmentation

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020.
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Joint Estimation of Pose, Geometry and svBRDF

Contributions:
» Joint formulation

> Single objective function
minimized using off-the-shelf

gradient-based solvers ]11121
» Meaningful segmentation

differentiably part of the optimization 01
» Accurate geometry o V10 mm

with very fine details Geometric error

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020.
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Qualitative Results

Conclusion:
» Joint estimation helps
» Thisis only a first step

» Object-level reconstruction
remains challenging with
limited observations

» Scaling to larger scenes

» Scaling to scenes with
external illumination

Relighting Novel Viewpoint

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020.
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How to obtain training data with semantic labels?

KITTI-360




KITTI-360

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016

28



KITTI-360

Sensors:
» Front-facing stereo camera
» 360° fisheye cameras
» Velodyne HDL 64 laser scanner
» SICK pushbroom laser scanner
» IMU/GPS localization system

Features:
» Driving distance: 73.7km Frames: 4 x 83,000
» All frames accurately geolocalized (= OpenStreetMap)
» Semantic label definition consistent with Cityscapes, 19 classes for evaluation
» Each instance assigned with a consistent instance ID across all frames

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016 29



Sensors
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360° 2D Sensors
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360° 3D Sensors

Velodyne

Stereo
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3D Annotations

Semantic Instance




2D Annotations
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Thank you!

http://autonomousvision.github.io
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http://autonomousvision.github.io

