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3D Representations

I Traditional Explicit Representations⇒ Discrete
I Implicit Neural Representation⇒ Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 3



Limitations

Structure of implicit neural representations:
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I Global latent code⇒ no local information, overly smooth geometry
I Fully connected architecture⇒ does not exploit translation equivariance

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 4



Limitations

Implicit models work well for simple objects but poorly on complex scenes:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 4



How to reconstruct large-scale 3D scenes with
implicit neural representations?

Convolutional Occupancy Networks



Convolutional Occupancy Networks
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I 2D Plane Encoder: Local PointNet processes input, project onto canonical plane
I 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
I Occupancy Readout: Shallow occupancy network fθ(·)

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 6



Convolutional Occupancy Networks
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I 3D Volume Encoder: Local PointNet processes input, volumetric feature encoding
I 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interp.
I Occupancy Readout: Shallow occupancy network fθ(·)

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 6



Comparison
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 7



Results



Object-Level Reconstruction

Input ONet Ours GT

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 9



Training Speed
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 10



Training Speed

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 10



Scene-Level Reconstruction

Input ONet SPSR Ours GT

I Trained and evaluated on synthetic rooms

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 11



Scene-Level Reconstruction

Input ONet SPSR Ours

I Trained on synthetic rooms, evaluated on ScanNet

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 12



Large-Scale Reconstruction

Results on Matterport3D
I Fully convolutional model
I Trained on synthetic crops
I Sliding window evaluation
I Scales to any scene size

Room-Level
Reconstruction

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 13



Key Insights

Key Insights:
I Convolutional models allow for scaling implicit models to larger scenes
I Convolutional models train faster than fully implicit models
I Convolutional models allow for incorporating local feature information
I For objects, the 3-plane model has the best accuracy/memory trade-off
I For scenes, the volumetric representation performs best
I Models transfer from synthetic to real scenes

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. arXiv, 2020. 14



How to capturing the visual appearance of objects?

Conditional Surface Light Fields



Problem Definition
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020. 16



Existing Representation

Texture Fields
I 3D consistent
I Generalize across objects
I View-point independent
I Do not model lighting

[Oechsle et al., ICCV 2019]

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020. 17



Conditional Surface Light Field
Rendering equation:

L(p,v, l,n) =

∫
Ω

svBRDF(p, r,v) · l(r) · (nT r) dr

Conditional surface light field:

LcSLF(p,v, l) : R3 × R3 × RM → R3

Neural Network

View direction Light setting

3D Point

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020. 18



Overfitting to Single Objects
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020. 19



Single-Image Appearance Prediction

Appearance Field
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020. 20



Generative Model
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. arXiv, 2020. 21



How to obtain training data with materials?

Joint Estimation of Pose, Geometry and svBRDF



Joint Estimation of Pose, Geometry and svBRDF

Goal: Dataset of 3D indoor scenes
captured with high accuracy
from a handheld mobile sensor.

Custom built sensor rig:
I Custom IR depth sensor

similar to Microsoft Kinect
I Active illumination + RGB camera

for material estimation

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 23



Joint Estimation of Pose, Geometry and svBRDF

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 23



Materials←→ Geometry

−→ Accurate geometry reconstruction requires known appearance properties

←− Accurate appearance estimation requires very well known geometry

←→ Joint estimation requires only a rough initialization for both

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 24



Joint Estimation of Pose, Geometry and svBRDF

Contributions:
I Joint formulation
I Single objective function

minimized using off-the-shelf
gradient-based solvers

I Meaningful segmentation
differentiably part of the optimization

I Accurate geometry
with very fine details

X ∗ = argmin
X

L(X )

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 25



Joint Estimation of Pose, Geometry and svBRDF

Contributions:
I Joint formulation
I Single objective function

minimized using off-the-shelf
gradient-based solvers

I Meaningful segmentation
differentiably part of the optimization

I Accurate geometry
with very fine details

Reconstruction Segmentation

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 25



Joint Estimation of Pose, Geometry and svBRDF

Contributions:
I Joint formulation
I Single objective function

minimized using off-the-shelf
gradient-based solvers

I Meaningful segmentation
differentiably part of the optimization

I Accurate geometry
with very fine details Geometric error

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 25



Qualitative Results

Relighting Novel Viewpoint

Conclusion:
I Joint estimation helps
I This is only a first step
I Object-level reconstruction

remains challenging with
limited observations

I Scaling to larger scenes
I Scaling to scenes with

external illumination

Schmitt, Donné, Riegler, Koltun and Geiger: On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner. CVPR, 2020. 26



How to obtain training data with semantic labels?

KITTI-360



KITTI-360

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016 28



KITTI-360
Sensors:
I Front-facing stereo camera
I 360◦ fisheye cameras
I Velodyne HDL 64 laser scanner
I SICK pushbroom laser scanner
I IMU/GPS localization system

Features:
I Driving distance: 73.7 km Frames: 4 × 83,000
I All frames accurately geolocalized (⇒ OpenStreetMap)
I Semantic label definition consistent with Cityscapes, 19 classes for evaluation
I Each instance assigned with a consistent instance ID across all frames

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016 29



Sensors

x
y
z

x

y
z

GPS/IMU
(0.9 m)

x

z
yCam 1

Cam 2

x

z
y

Cam 3

2.71 m

0.81 m

0.32 m

0.79 m

0.60 m

0.05 m

0.48 m

All heights wrt. road surface

Wheel   axis
(0.30m)

1.60 m

Camera
inclination:
~5° (down)

Velodyne
(1.73 m)

x

z

y

x z

y

Cam 4

0.92 m
0.08 m

SICK
(1.69 m)

0.40 m

Fisheye
cameras
(1.95 m)

Perspective
cameras
(1.55 m)

30



360◦ 2D Sensors
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360◦ 3D Sensors
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3D Annotations

RGB Bounding Box

Semantic Instance
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2D Annotations

Semantic Instance

Confidence Bounding Box
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Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

