
Supplementary Material for
GIRAFFE: Representing Scenes as

Compositional Generative Neural Feature Fields

Michael Niemeyer1,2 Andreas Geiger1,2
1Max Planck Institute for Intelligent Systems, Tübingen 2University of Tübingen

{firstname.lastname}@tue.mpg.de

Abstract

In this supplementary document, we first discuss network architectures, implementation details, and the training protocol
in Sec. 1. Next, we describe data preprocessing and augmentation strategies in Sec. 2. Finally, we provide additional
qualitative as well as quantitative experimental results in Sec. 3.

1. Implementation
In this section, we first discuss the network architectures of our feature fields and discriminator (Sec. 1.1). Next, we

provide details regarding the evaluation (Sec. 1.2) and training protocol (Sec. 1.3). Finally, we describe relevant volume
rendering techniques (Sec. 1.4) and baseline implementations (Sec. 1.5).

1.1. Network Architectures

Feature Field Architecture: We parameterize the object and background feature fields with multi-layer perceptrons (MLPs)
which map an input point x ∈ R3 and viewing direction d ∈ S2 together with latent shape and appearance codes zs, za ∼
N (0, I) to a one-dimensional density σ and a Mf -dimensional feature vector f (see Fig. 1). As indicated in the main paper,
we apply positional encoding to x and d before passing it to the network. Similar to previous works [16, 23], we use 10 and
4 frequency octaves for x and d, respectively, such that we embed them in a Lx = 2 · 3 · 10 = 60 and Ld = 2 · 3 · 4 = 24
dimensional space. For the object feature field, we use 8 fully-connected layers with a hidden dimension of 128 and ReLU
activation. We add a skip connection from the input to the fourth layer which was shown to improve results in the context
of 3D reconstruction [19]. For the background feature field, we use 4 layers with a hidden dimension of 64 and ReLU
activation due to its lower complexity. We half the hidden dimensions for experiments on scenes with three objects or more
to facilitate training. In both networks, we project the features to the first output, the one-dimensional density σ, and use
a single fully-connected layer with ReLU activation for the view-dependent feature prediction branch similar to previous
works [16, 23]. The features are then projected to the second output, a Mf -dimensional feature vector f . This way, we
ensure that the density prediction only depends on the input point x and the latent shape code zs as the geometry of objects
is independent of the viewpoint. Further, we use only a single view-dependent layer to enable weight sharing between the
two branches. We sample the latent codes zs, za from a 256-dimensional Gaussian for the object feature field, and from a
128-dimensional Gaussian for the background feature field. We reduce the dimensionality to 64 and 32, respectively, for
experiments on scenes with three objects or more to facilitate training.
Discriminator Architecture: We parameterize our discriminator Dφ as a fully-convolutional neural network with leaky
ReLU activations [22]. We use 5 and 7 layers for resolutions of 642 and 2562 pixels, respectively (see Tab. 2).

1.2. Evaluation Metric

To quantify image quality, we report the Frechet Inception Distance (FID) score [6]. We use 20,000 real and fake samples
to calculate the FID score. To be compatible with [23], we adhere to the authors’ evaluation and use their evaluation script
for reported experiments on datasets Chairs, Cats, CelebA, and CelebA-HQ.

1



+ +

(a) Object Feature Field.

+

(b) Background Feature Field.

Figure 1: Feature Fields Architecture. We parameterize the object (Fig. 1a) and background (Fig. 1b) feature fields with
multi-layer perceptrons (MLPs) which take as input a 3D point x and viewing direction d together with latent shape and
appearance codes zs, za and output a density σ and feature f . More specifically, we apply the positional encoding γ to input
point x and concatenate γ(x) and the latent shape code zs. This is followed by blocks of fully-connected layers (yellow
color) with ReLU activation (red color). We use 8 blocks with a hidden dimension of 128 and one skip connection to the
fourth layer for the object feature field, and 4 blocks with a hidden dimension of 64 for the background feature field. We
then project this to the first output, the one-dimensional density output σ (blue). In a second branch, we apply the positional
encoding γ to the viewing direction d, concatenate γ(d) to the latent appearance code za, and add it to the previous hidden
features. We pass it through a single fully-connected layer with ReLU activation and project it to the second output, the
Mf -dimensional feature output f (blue). We set Mf to 128 and 256 for 642 and 2562 pixels, respectively.

1.3. Training Protocol

We train with the RMSprop optimizer [24] and use a batch size of 32 and learning rates of 1× 10−4 and 5× 10−4

for the discriminator and generator, respectively. For experiments at 2562 pixels, we reduce the generator learning rate to
2.5× 10−4. We perform single-GPU training and train our models for one to four days. To determine when to stop training,
we follow common practice and evaluate the FID metric every 10,000 iterations.

1.4. Volume Rendering

3D Point Sampling: We follow [16] and use stratified sampling to approximate the intractable volumetric projection integral.
More specifically, we partition each ray into Ns = 64 evenly-spaced bins and sample uniformly one sample point within
each bin. Let r(t) = r0 + t · d denote the ray starting from r0 with direction d, and let tn, tf be the near and far plane of the

2



Layer Type Kernel Size Stride Padding Activation Feature Dimension Spatial Output Dimensions

Conv 4× 4 2 1 LReLU 64 32× 32
Conv 4× 4 2 1 LReLU 128 16× 16
Conv 4× 4 2 1 LReLU 256 8× 8
Conv 4× 4 2 1 LReLU 512 4× 4
Conv 4× 4 1 0 - 1 1× 1

(a) 642 Pixel Resolution.

Layer Type Kernel Size Stride Padding Activation Feature Dimension Spatial Output Dimensions

Conv 4× 4 2 1 LReLU 16 128× 128
Conv 4× 4 2 1 LReLU 32 64× 64
Conv 4× 4 2 1 LReLU 64 32× 32
Conv 4× 4 2 1 LReLU 128 16× 16
Conv 4× 4 2 1 LReLU 256 8× 8
Conv 4× 4 2 1 LReLU 512 4× 4
Conv 4× 4 1 0 - 1 1× 1

(b) 2562 Pixel Resolution.

Figure 2: Discriminator Architecture. Our discriminator consists of fully-convolutional layers with 4× 4 kernels and leaky
ReLU activation functions. We use 5 and 7 layers for 642 and 2562 pixel resolutions, respectively.

camera. The i-the sample point is then defined as

xi = r(ti) where ti ∼ U
(
tn +

i− 1

Ns
(tf − tn), tn +

i

Ns
(tf − tn)

)
(1)

Camera: In all experiments, we define the camera to be on a sphere with radius 2.732 and use tn = 0.5 and tf = 6 as
near and far planes, respectively. Note that, as we learn from unposed and unstructured image collections, the camera radius
is arbitrary. We adopt this setting from popular rendering scripts [11] as with this camera, the scene bounds are roughly
described by the unit cube when using common fields of view.

1.5. Baselines

2D GAN: For reference, We report results for a ResNet-based [4] 2D GAN [15] in our experiments. We adopt the training
protocol and network architectures from [15]. We use the RMSprop optimizer with generator and discriminator learning
rates of 1× 10−4. We train with the non-saturating GAN objective [2] and R1 gradient penalty [15]. Similar to [23], we
use minimum and maximum feature dimensions of 16 and 512, respectively, such that the generator has in total 1,689,267
parameters (our generator has 411,595 parameters).

HoloGAN: We use the official HoloGAN [17] implementation1 and follow their training protocol: We train with the Adam
optimizer [12] with an initial learning rate of 1× 10−4 for experiments at 642 pixels, and 5× 10−5 for higher resolutions.
We train for 50 epochs, and linearly reduce the learning rate after the first 25 epochs. We further use the identity regularizer
and style discriminator loss for an image resolution of 2562 pixels. If provided, we use the pose ranges from the authors,
otherwise we use the same as for our method. For the non-object-centered datasets CompCars and Churches, we follow [18]
and add random translation offsets during training. While the official implementation provides generator architectures for
642 and 1282 pixel resolutions, we obtain the generator for 2562 pixels by adding one transposed convolutional layer with
adaptive instance normalization [7] and leakly ReLU activation to the 1282 generator, and, similar to the previous layers, and
apply the style discriminator loss to this intermediate output as well.

PlatonicGAN: We use the official PlatonicGAN [5] implementation provided by the authors.2 We follow their training
protocol and train with the Wasserstein loss and gradient penalty [3], and use a batch size of 16. We follow [23] and use

1https://github.com/thunguyenphuoc/HoloGAN
2https://github.com/henzler/platonicgan

3

https://github.com/thunguyenphuoc/HoloGAN
https://github.com/henzler/platonicgan


(a) GRAF [23] on CompCars with Random Cropping. (b) GRAF [23] on CompCars with Random Cropping.

Figure 3: GRAF on CompCars. In our experiments on CompCars, we apply random cropping to achieve more variety in the
data wrt. the car positions within the scene. However, we find that GRAF [23] does not lead to consistent 3D representations
when random cropping is applied (see Fig. 3a), such that we report results for GRAF without random cropping (see Fig. 3b).
Note that also quantitatively results are improved from an FID score of 116 to 39 at 642 pixel resolution.

Name Type Number
of Images

Object
Rotation Range

Background
Rotation Range

Camera
Elevation Range

Horizontal
Translation

Depth
Translation

Object
Scale

Field
of View

Chairs [20] Synth. 152,680 360◦ 0◦ 90◦ - - 1 49◦

Cats [28] Real 9407 70◦ 0◦ 10◦ - - 1 10◦

CelebA [14] Real 202,599 70◦ 0◦ 10◦ - - 1 10◦

CompCars [26] Real 136,726 360◦ 0◦ 10◦ −0.12− 0.12 −0.22− 0.22 0.8− 1 10◦

Churches [27] Real 126,227 360◦ 90◦ 0◦ −0.15− 0.15 −0.15− 0.15 0.8− 1 30◦

CelebA-HQ [9] Real 30,000 90◦ 0◦ 10◦ - - 1 10◦

FFHQ [10] Real 70,000 70◦ 0◦ 10◦ - - 1 10◦

Clevr-2 [8] Synth. 54,336 0◦ 0◦ 0◦ −0.7− 0.7 −0.7− 0.7 1 49◦

Table 1: Dataset Parameters. We report relevant parameters for all datasets. We use the same dataset-specific parameters
for experiments at 642 and 2562 pixels.

reduced discriminator and generator learning rates of 5× 10−6 and 7.5× 10−4 to stabilize training. The reconstruction loss
is weighted with factor 100 and the convolutional layers in the discriminator and generator have a minimum of 256 features.
We use the adopted camera pose samping from [23].
GRAF: We use the authors’ implementation of GRAF [23]. If reported, we use the authors’ pose ranges, otherwise use the
same as for our method, except for Clevr-2 where we use a full rotation as we did not obtain competitive results with the
correct rotation angle of 0◦.

2. Data
In the following paragraphs, we discuss dataset-specific parameters, the data processing and augmentation strategies we

use, and the data generation of the Clevr datasets.
Dataset Parameters: In Tab. 1, we report relevant parameters for all datasets. We use the same parameters for experiments
at 642 and 2562 pixels. As indicated in the main publication, we sample the object rotation, background rotation, camera
elevation, horizontal and depth translation, and object size from uniform distributions over the indicated ranges. For the Clevr
datasets, we sample object locations from the distribution we obtain during dataset generation (see below) to avoid collisions.
We find that adding random background rotations for Churches slightly improves the quality of the learned disentanglement
while the quantitative results are the same (both achieve an FID score of 17.27 at 642 pixel resolution).
Image Center Cropping: To ensure a fair comparison, we follow [17, 23] and center crop the images of the CelebA and
CelebA-HQ datasets to 1082 and 6502 pixels, respectively.
Image Random Cropping: For the CompCars dataset, we first rescale the image such that the smaller image dimension is
64 or 256 pixels, depending on the image resolution of the experiment. Next, we obtain our quadratic image by randomly
selecting a 642 or 2562 cropping window, respectively. This way, we achieve more variety wrt. the position of the cars within
the scene. We find that PlatonicGAN [5] and GRAF [23] cannot handle this data augmentation but instead require the object
to be centered in the image, such that we do not apply random cropping for these baselines to improve their performance
(see Fig. 3).
Data Augmentation: For all experiments, we randomly flip images horizontally during training to achieve more variety in
the data.
Clevr Dataset Generation: As discussed in the main paper, we use the script from [8] to render multi-object scenes of

4



WGAN-GP [3] LR-GAN [25] HoloGAN [17] BlockGAN [18] Ours

CompCars 0.035 ± 0.001 0.014 ± 0.001 0.028 ± 0.002 0.016 ± 0.001 0.010 ± 0.001

Table 2: Quantitative Comparison to BlockGAN. As the authors report results for BlockGAN [18] on CompCars at 642

pixel resolution, we are able compare our method against their reported results. We follow their protocol and report the KID
score (↓) for 10,000 real and fake samples.

random primitives. We adjust the camera position to have a rotation of 0◦ instead of 43◦. We save renderings and positions
of placed primitives to files. During training, we sample the translations of object feature fields from the saved positions.

3. Additional Experimental Results

In this section, we first provide additional baseline comparisons (Sec. 3.1) and ablation studies (Sec. 3.2). Next, we show
more controllable image synthesis examples (Sec. 3.3), failure cases (Sec. 3.4), and random samples (Sec. 3.5).

3.1. Baseline Comparisons

Comparison to Controllable Image Synthesis: As discussed in the main publication, Controllable Image Synthesis
(CIS) [13] is a 3D-aware method which allows for generating multi-object scenes with object-level control. However, as
CIS requires additional supervision in the form of labeled (pure) background images, we restrict the comparison to the syn-
thetic Clevr dataset and additionally render pure background images. Further, as we could not obtain competitive results for
CIS on Clevr-2345, we compare CIS and our method on scenes with 0, 1, 2, or 3 primitives (Clevr-0123) at 642 pixels which
is the same setting as the authors consider.

Quantitatively, our method achieves a higher FID score than CIS (13 to 83). While both methods allow for controllable
image synthesis, our method leads to more consistent results (see Fig. 4). Note that while CIS learns object-level locations,
we sample them from the data distribution. In contrast to CIS which requires supervision in the form of labeled background
images, object disentanglement emerges without any supervision for our method.

Comparison to BlockGAN: In Tab. 2, we show the KID results reported in [18] and ours.3 We adhere to their evaluation
protocol and sample 10,000 real and fake images to calculate the KID score.

3.2. Ablation Studies

Robustness Against Wrong Distributions: To investigate the robustness of our method against wrong distributions over the
object poses, we train our model on CompCars at 642 pixel resolution with an object rotation of 15◦ instead of 360◦, and
on CelebA at 642 pixel resolution with an object rotation of 360◦ instead of 15◦. Surprisingly, the quantitative results do not
change significantly: We obtain the same FID score for CelebA (6) and a slightly worse score for CompCars (19 compared to
16). Qualitatively, we observe that our model has two modes (front and back position) for the canonical pose for CompCars,
and still learns a plausible 70◦ rotation. For CelebA, we observe that it learns two rotations with an identity flip after 180◦.
Note that for the latter, it is not possible to learn a plausible 360◦ rotation as the dataset only contains frontal images of human
faces.

Composition Operator: We implement the composition operator (Eq. (8) in the main publication) as a sum for the density,
and a density-weighted mean for the feature vector. This is a natural choice when combining non-solid objects [1]. To
validate this choice, we evaluate our model on CompCars at 642 pixels when using the max operation instead. In this case,
we evaluate the density and feature for a given 3D point and viewing direction (x,d) by first identifying the feature field with
the maximum density at 3D point x, and then selecting the density and feature of this field. We observe that using our choice
instead of the max operations leads to an FID score improvement from 18.47 to 16.16.

Feature Rendering: In Fig. 6, we show a qualitative comparison of our method with and without the neural renderer, where
for the latter, we directly render RGB color instead of features. We find that removing the neural renderer leads to slower
inference, higher memory consumption, and degraded results. Also quantitatively, we find that results are worse (61 to 16 in
FID on CompCars at 642 pixels).

3For KID evaluation, we use the code from https://github.com/abdulfatir/gan-metrics-pytorch with the official Tensorflow Inception network weights
from https://github.com/mseitzer/pytorch-fid.

5

https://github.com/abdulfatir/gan-metrics-pytorch
https://github.com/mseitzer/pytorch-fid


(a) Controllable Image Synthesis [13].

(b) Ours.

Figure 4: Qualitative Comparison to CIS. We show renderings (top rows) and color-coded alpha maps (bottom rows) for
single-object depth translations for Controllable Image Synthesis (CIS) [13] and our method on Clevr-0123 at 642 pixels.
While both methods allow for controllable image synthesis, we achieve more consistent and higher-quality results. Note that
while CIS learns the object-level transformations, we sample them from the data distribution. Further, CIS requires addi-
tional supervision in the form of labelled background images, while ours learns to disentangle objects from the background
unsupervised.

6



(a) 70◦ Rotation on CompCars. (b) 360◦ Rotation on CelebA.

Figure 5: Robustness. To investigate the robustness of our model against wrong distributions over object poses, we train our
method on CompCars with only a 70◦ degree rotation instead of 360◦, and on CelebA with a 360◦ degree rotation instead of
70◦. For CompCars, our model has two modes (front and back) in the canonical pose, and still learns a plausible 70◦ rotation.
For CelebA, it learns two half rotations where it flips the entity after 180◦ degrees. Note that for the latter, it is not possible
to learn a plausible 360◦ rotation as the dataset only contains frontal images of human faces.

(a) Ours without Neural Renderer (b) Ours

Figure 6: Effect of Neural Renderer. We compare our method without (Fig. 6a) and with the neural rendering pipeline
(Fig. 6b) on CompCars at 642. We find that incorporating a neural renderer not only leads to better quantitative results, but
also qualitatively our method achieves more consistent representations.

3.3. Controllable Image Synthesis

Many-Object Scenes: As discussed in the main publication, our model is able to disentangle objects from the background
without any explicit supervision. To test our model on scenes with even more objects, we render images with 10 random
primitives in the scene (Clevr-10). In Fig. 11, we show renderings of only backgrounds and only foreground objects as well
as color-coded object alpha maps and the synthesized images. We observe that even for 10-object scenes, our model is able
to disentangle individual objects at both 642 and 2562 pixel resolutions.
Additional Results: In Fig. 7, 8, 9, and 10, we show additional examples in which we control the scene during image
synthesis.

3.4. Failure Cases

We sometimes observe disentanglement failures, e.g. for Churches where the background contains a church, or for Cars,
where background elements are contained in the foreground object (see Fig. 12). We attribute these failures to mismatches
between the assumed uniform distributions over object and camera poses (see above) and their real distributions. We identify
learning the distributions instead from data as promising future work.

3.5. Random Samples

We show grids of random samples from our method on all datasets in Fig. 13, 14, 15, 16, 17 at 642 pixel resolution and
in Fig. 18, 19, 20, 21, 22, 23, 24, 25 at 2562 pixel resolution.

7



(a) Object Rotation for CompCars at 2562 pixels.

(b) Camera Elevation for CompCars at 2562 pixels.

Figure 7: Controllable Image Synthesis. We show object rotations and camera elevations for our method on CompCars at
2562 pixel resolution.

8



(a) Single-Object Translation for a 2D-based GAN [21] at 2562 pixels.

(b) Single-Object Translation for our Method at 2562 pixels.

Figure 8: Controllable Image Synthesis. We show single-object depth translations for a 2D-based GAN [21] and our method
at 2562 pixels. Note how for the 2D-based method, translating one object might affect the other. In contrast, we incorporate
3D compositional scene structure into the generative model, leading to more consistent results.

9



Figure 9: Controllable Image Synthesis. We show circular translations for our method on Clevr-2 at 2562 pixel resolution.

10



(a) Object Rotation for CelebA-HQ at 2562 pixels.

(b) Object Rotation for LSUN Churches at 2562 pixels.

(c) Object Rotation for FFHQ at 2562 pixels.

Figure 10: Controllable Image Synthesis. We show object rotations for our method on CelebA-HQ, LSUN Churches, and
FFHQ at 2562 pixel resolution.

11



(a) Ours on Clevr-10 at 642 pixels.

(b) Ours on Clevr-10 at 2562 pixels.

Figure 11: Unsupervised Disentanglement. From left to right, we show only background, only objects, color-coded object
alpha maps, and synthesized images for our method on Clevr-10 at 642 and 2562 pixel resolutions, respectively. Note that
our model is able to disentangle individual objects for images of 10-object scenes without any explicit supervision.

(a) Disentanglement Failure on Churches.

(b) Disentanglement Failure on CompCars.

Figure 12: Disentanglement Failures. For Churches, the background sometimes contains a church, and for CompCars, the
object sometimes contains background parts or vice versa. We attribute these to mismatches between the assumed uniform
distributions over object and camera poses and their real distributions, and identify learning them instead as interesting future
work.

12



Figure 13: Random Samples. We show random samples for our method on Chairs at 642 image resolution.

13



Figure 14: Random Samples. We show random samples for our method on Cats at 642 image resolution.

14



Figure 15: Random Samples. We show random samples for our method on CelebA at 642 image resolution.

15



Figure 16: Random Samples. We show random samples for our method on CompCars at 642 image resolution.

16



Figure 17: Random Samples. We show random samples for our method on Churches at 642 image resolution.

17



Figure 18: Random Samples. We show random samples for our method at 2562 image resolution on Clevr-2.

18



Figure 19: Random Samples. We show random samples for our method at 2562 image resolution on Clevr-3.

19



Figure 20: Random Samples. We show random samples for our method at 2562 image resolution on Clevr-4.

20



Figure 21: Random Samples. We show random samples for our method at 2562 image resolution on Clevr-5.

21



Figure 22: Random Samples. We show random samples for our method at 2562 image resolution on Churches.

22



Figure 23: Random Samples. We show random samples for our method at 2562 image resolution on CompCars.

23



Figure 24: Random Samples. We show random samples for our method at 2562 image resolution on FFHQ.

24



Figure 25: Random Samples. We show random samples for our method at 2562 image resolution on CelebA-HQ.

25



References
[1] Robert A. Drebin, Loren C. Carpenter, and Pat Hanrahan. Volume rendering. In ACM Trans. on Graphics, 1988. 5
[2] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua

Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS), 2014. 3
[3] Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Improved training of wasserstein

gans. In Advances in Neural Information Processing Systems (NIPS), 2017. 3, 5
[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2016. 3
[5] Philipp Henzler, Niloy J Mitra, , and Tobias Ritschel. Escaping plato’s cave: 3d shape from adversarial rendering. In Proc. of the

IEEE International Conf. on Computer Vision (ICCV), 2019. 3, 4
[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale

update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems (NIPS), 2017. 1
[7] Xun Huang and Serge J. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In Proc. of the IEEE

International Conf. on Computer Vision (ICCV), 2017. 3
[8] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic

dataset for compositional language and elementary visual reasoning. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 4

[9] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved quality, stability, and
variation. In Proc. of the International Conf. on Learning Representations (ICLR), 2018. 4

[10] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2019. 4

[11] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018. 3

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of the International Conf. on Machine
learning (ICML), 2015. 3

[13] Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas Geiger. Towards unsupervised learning of generative models for 3d control-
lable image synthesis. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. 5, 6

[14] Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, and Xiaoou Tang. Semantic image segmentation via deep parsing network. In
Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2015. 4

[15] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually converge? In Proc. of the
International Conf. on Machine learning (ICML), 2018. 3

[16] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing
scenes as neural radiance fields for view synthesis. In Proc. of the European Conf. on Computer Vision (ECCV), 2020. 1, 2

[17] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. Hologan: Unsupervised learning of 3d
representations from natural images. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019. 3, 4, 5

[18] Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy Mitra. Blockgan: Learning 3d object-aware scene
representations from unlabelled images. In Advances in Neural Information Processing Systems (NeurIPS), 2020. 3, 5

[19] Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove. Deepsdf: Learning continuous signed
distance functions for shape representation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019. 1

[20] Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M. Seitz. Photoshape: Photorealistic materials for large-scale shape
collections. Communications of the ACM, 2018. 4

[21] William S. Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Torralba. The hessian penalty: A weak prior for
unsupervised disentanglement. In Proc. of the European Conf. on Computer Vision (ECCV), 2020. 9

[22] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversar-
ial networks. In Proc. of the International Conf. on Learning Representations (ICLR), 2016. 1

[23] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields for 3d-aware image synthesis.
In Advances in Neural Information Processing Systems (NeurIPS), 2020. 1, 3, 4

[24] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 2012. 2

[25] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-GAN: layered recursive generative adversarial networks for image
generation. In Proc. of the International Conf. on Learning Representations (ICLR), 2017. 5

[26] Jiaolong Yang and Hongdong Li. Dense, accurate optical flow estimation with piecewise parametric model. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2015. 4

[27] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset using deep
learning with humans in the loop. arXiv.org, 1506.03365, 2015. 4

[28] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detection - how to effectively exploit shape and texture features. In Proc. of the
European Conf. on Computer Vision (ECCV), 2008. 4

26


