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Abstract— Modern driver assistance systems such as collision
avoidance or intersection assistance need reliable information
on the current environment. Extracting such information from
camera-based systems is a complex and challenging task for
inner city traf�c scenarios. This paper presents an approach
for object detection utilizing sparse scene �ow. For consecutive
stereo images taken from a moving vehicle, corresponding
interest points are extracted. Thus, for every interest point,
disparity and optical �ow values are known and consequently,
scene �ow can be calculated. Adjacent interest points describing
a similar scene �ow are considered to belong to one rigid
object. The proposed method does not rely on object classes
and allows for a robust detection of dynamic objects in traf�c
scenes. Leading vehicles are continuously detected for several
frames. Oncoming objects are detected within �ve frames after
their appearance.

I. I NTRODUCTION

Inner city traf�c is a very complex and demanding sce-
nario for modern driver assistance systems (DAS). Different
applications such as collision avoidance, lane keeping or in-
tersection assistance need reliable information on the current
traf�c situation.

Perception and understanding of highly dynamic traf�c
scenes is crucial for such systems. Urban traf�c is more
complex than highway traf�c, thus the task for DAS is
more challenging and currently an unsolved problem: Traf�c
scenes are crowded with many different types of traf�c
participants such as cars, pedestrians, cyclists or trams which
must be distinguished while the surrounding scenery may
differ arbitrarily. Two typical scenarios for rural roads and
inner city traf�c are given in Fig. 1. In these situations, the
DAS itself must work reliably with low error-rates and react
correctly to abruptly changing scenarios considering objects
in a wide range (from close to the hood to more than50 m
ahead).

The goal of our approach is a class-independent detection
of moving objects for inner city traf�c scenarios without
applying a previous training step. The proposed method pro-
vides three-dimensional (3D) position information of moving
objects in a world coordinate system. We believe that this
information constitutes valuable input to downstream pro-
cessing steps, which enable functions like tracking, trajectory
estimation, and, ultimately, a high-level description of the
current environment.

In this work we apply a stereo camera for object detection.
By exploiting four images at once, stereo and optical �ow

(a) Rural Road Traf�c

(b) Inner City Traf�c

Fig. 1. Typical traf�c situations for rural and inner city scenarios.
The road geometry of highways and rural roads (a) is rather clear compared
to arbitrary inner city streets (b) where distinctive features may be missing
or misleading. Due to the high degree of diversity of traf�c participants
and views, class dependent object detectors will be error prone for DAS
applications.

information are obtained. Since for every detected point the
3D position and the optical �ow between two consecutive
frames is known, a sparse scene �ow description [27] of the
scene is achieved, describing 3D motion of world points.
Since interest points can be tracked over several frames, the
scene �ow is computed via �nite differences for a track
up to �ve 3D positions. Utilizing this information, points
describing a similar scene �ow are grouped together belong-
ing to corresponding rigid objects in the scene. Adjacent
points are connected using a Delaunay triangulation and the
resulting edges are removed if the scene �ow difference
exceeds a certain threshold. As the error of the 3D position
grows quadratically with the distance, error propagation of
the scene �ow computation is taken into account to remove
edges by thresholding the calculated Mahalanobis distance.

Pedestrians and cars are detected within a reasonable range
for inner city intersection scenarios. Detected objects in
front of the observer vehicle are tracked for up to15 s and
infrequent traf�c participants such as wheelchair users are
detected as well.



Fig. 2. System Overview.(a) Interest points are detected in two consecutive stereo image pairs. (b) Stereo disparity and optical �ow information lead to
a 3D reconstruction of the detected points which are here projected on the detected ground plane. (c) Interest points are connected in a graph-like structure
and the resulting edges are removed (marked in red) if the scene �ow difference exceeds a certain threshold. (d) Remaining connected components describe
moving objects in the scene.

The paper is structured as follows: In the next section,
related work is presented and distinguished from our work.
An overview of the method is given in Section III before the
object detection is discussed in more detail in Section IV.
Some results are shown in Section V before the paper is
concluded by a summary and an outlook.

II. PREVIOUS WORK

Robust scene perception in urban environments is a current
�eld of research [1], [8], [9], [13], [18], [21], [22], [28]
and is investigated by applying different sensors. LIDAR
systems offer a high geometric accuracy for 3D world points
that can be used to detect multiple objects under ground
plane assumption [28] or by using a model-based object
detector [17]. Recent work shows, that motion estimation
from range images gives promising results as well [21].

While LIDAR can directly provide important 3D infor-
mation, the required data lacks of rich appearance. This is
where camera based systems bear high potential. Several
approaches for object recognition in the image domain exist
to detect single [6], [20] or multiple [11], [26] object classes.
However, this task is even harder, if the observing camera
is moving and egomotion is affecting the image acquisition
due to blur or changing lighting condition [5], [19]. These
methods generally use an uninformed search over the whole
image and discard further information on the scene geome-
try. Additionally, environment perception for DAS does not
only require detected objects in the image domain but also
demands a 3D description of the observed traf�c scenario
in order to perform e.g. collision avoidance. The 3D scene
geometry can be estimated using only a single frame as well,
but several restrictions must apply and the scene must be rich
of known objects [16].

A stereo camera system allows for geometric reconstruc-
tion of the scene in a 3D world coordinate system [15].
Nedevschi [23], [24] introduced a system for inner city object
detection and classi�cation utilizing a stereo camera system.
Dense stereo information is used for reconstruction and 3D
data used for model selection and scale estimation. Object
classi�cation relies on pattern matching exploiting object
scale, orientation and location in the scene obtained by a
previous model selection step. Franke [13] and Wedel [29]

utilize stereo data to estimate 3D position and 3D motion
of interest points for a robust detection of moving objects.
Pfeiffer [25] introduced the tracking of stixels obtained from
dense stereo images as a representation for suburban traf�c
scenarios.

Mueller [22] evaluated the optical �ow difference of
adjacent interest points to group them describing independent
objects in the scene. This approach utilizes interest points
detected in a monocular image sequence which are connected
in a graph-like structure and is most similar to the proposed
one. In contrast, we are using scene �ow information for
detected interest points since the approach in [22] uses
constraints describing motion of rigid objects in the image
plane that are not strong enough for inner city scenarios.

Ess [9] uses the HOG framework [6] for object detection
and consequently multiple object tracking for inner city
traf�c scenes. For this application, it turned out to be superior
compared to [11], [20] since the shape variations of traf�c
participants are relatively small [9].

III. SYSTEM OVERVIEW

Figure 2 outlines our system: Interest points are detected
in two consecutive and recti�ed stereo images and checked
for mutual consistency. The resulting disparity valuesd lead
to a 3D description for every detected interest point. Due to
the unknown mounting position of the stereo camera rig and
the pitching of the vehicle, the ground plane is detected to
obtain a meaningful description of the surrounding. Every
interest point is tracked over time and its scene �ow is
calculated using �nite difference approximation to yield
derivatives. The associated covariance is obtained by linear
error propagation.

A graph-like structure connecting all detected interest
points in the image plane is generated using Delaunay
triangulation [2]. The resulting edges are removed according
to scene �ow differences exceeding a certain threshold with
respect to the uncertainty of the computed 3D position of
every interest point. The remaining connected components
of the graph describe moving objects in the scene. Detected
objects are tracked over time using a global nearest neighbor
(GNN) approach [3].



IV. OBJECTDETECTION

The con�guration of our stereo camera rig is depicted in
Fig. 2. Two consecutive stereo images are considered. The
world reference frame is denoted withOW and coincides
with the left camera frame. Consequently the extrinsic cali-
bration of the setupf R C ; t C g is known and assumed to be
constant. Assuming a proper, calibration we will use recti�ed
input images for our algorithm, so that we only have to
deal with a horizontal search line for correspondences in
the stereo image pairs.

A. Scene Flow Computation

Interest pointsx = [ u; v]> are detected in two consecutive
stereo image pairs at timek; k� 1 using the algorithm of [14].
Only reliable feature correspondences which match in a loop
are kept (xL;k � 1 $ xR;k � 1 $ xR;k $ xL;k $ xL;k � 1).
Since the signal-to-noise ratio is rather low considering only
the previous frame, detected interest points are associated
and stored as tracklets for up to 5 time steps.

Since recti�ed images are used and the disparities are
estimated at sub-pixel accuracy, the extracted interest points
x k � 1; x k are mapped to 3D points in the world coordinate
systemX k � 1; X k with X = [ X; Y; Z ]> 2 R3. The recon-
struction is given by

X =
(uL � cu;L ) � b

d
(1)

Y =
(vL � cv;L ) � b

d
(2)

Z =
b� f

d
(3)

where b denotes the baseline of the stereo system,cu and
cv the principal point of the camera andf the focal length
for the recti�ed images. The center of the left-handed world
coordinate system isOW with the X axis pointing to the
right as depicted in Fig. 2.

The velocity V of every world point is assumed to be
constant within the tracked timet of 5 frames (t = 0 :5 s).
Thus, the velocity is computed as the �rst order derivative
of the world pointsX k � � t i :

V =
� X k � � t i

� t
(4)

The velocity is measured at discrete time steps
� t i ; i = 0 : : : 5 at a constant sampling rate of1=� t = 10 Hz.
This assumption of an equispaced grid leads to the
calculation of the coef�cients for the �rst order derivative
f 0 depending on the tracked time steps according to [12]:

f 0(x) � a0f (x) + a1f (x � 1) : : : + a5f (x � 5) (5)

Since the proposed algorithm is designed for automotive
applications, the delay between occurrence and detection of
an object should be minimal. Therefore, backward differ-
ences are used to determine the scene �ow. The coef�cients
are listed in Table I. An example of the resulting scene �ow
is shown in the system overview in Fig. 2.

� t i a0 a1 a2 a3 a4 a5

1 1 � 1
2 3=2 � 2 1=2
3 11=6 � 3 3=2 � 1=3
4 25=12 � 4 3 � 4=3 1=4
5 137=60 � 5 5 � 10=3 5=4 � 1=5

TABLE I

COEFFICIENTS FOR FINITE BACKWARD DIFFERENCES .

(a) Model of the 3D reconstruction error.

(b) Quadratically growing reconstruction error.

Fig. 3. Resulting noise of 3D reconstruction.One pixel noise of the
disparityuL � uR leads to the 3D positionX k and the associated covariance
ellipsoid � k (a). Error propagation leads to a quadratically growing error
of the 3D position with the largest uncertainty perpendicular to the line of
sight (b).

B. Scene Flow Clustering

The computed scene �ow is now clustered into groups
describing a similar motion. For this purpose, a graph-like
structure is built up where interest points are considered as
nodes and the adjacent nodes are connected by edges. To
obtain this structure, a Delaunay triangulation [2] as shown in
Fig. 4(a) is applied to determine neighboring interest points
for further processing steps.

Considering the absolute scene �ow differenceV i � V j

of adjacent nodesi; j and removing the corresponding
edges does not lead to a satisfying solution as shown in
Fig. 4(b). The reconstructed 3D position is error-prone due
to measurement noise. The resulting error of the 3D position
is computed by linear error propagation. The error grows
quadratically with the distance as depicted in Fig. 3, thus a
�xed threshold on the scene �ow difference is not suitable.

Therefore, the JacobianJ of the scene �ow for a 3D world
point X is calculated according to equation 6 with respect
to all image coordinatesuL ; uR ; v for all possible time steps
k � � t i .



(a) Interest point triangulation

(b) Fixed threshold

(c) Thresholding of Mahalanobis distance

Fig. 4. Graph building and clustering. Detected interest points are
connected using a Delaunay Triangulation (a). A �xed threshold to remove
the edges considering the scene �ow difference does not lead to a satisfying
solution (b). Considering error propagation and applying a threshold on the
resulting Mahalanobis distance groups similar objects in the scene (c).

(a) Remaining connected components

(b) Geometrically checked objects

(c) Tracked objects

Fig. 5. Object detection. All remaining connected components of the
computed graph are found by depth-�rst search (a). Geometric features are
taken into account to remove static parts of the scene. Objects are covered
by a bounding box, center and the velocity of the object are marked in their
respective color (b). Object tracking and expecting a detection in at least
two time steps leads to the �nal detection (c).
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The covariance� of the scene �ow is given by

� = JSJ > (7)

whereS is the diagonal measurement noise matrix assuming
a measurement noise of0:5 pixel. Assuming the noise to be
Gaussian, for two adjacent nodesi and j , the Mahalanobis
distance� is given by

�( V i ; V j ) =
q

(V i � V j )> � � 1
i;j (V i � V j ) (8)

according to [7]. Each edge is weighted0 (or removed) if
� exceeds a certain threshold. Consequently, the remaining
subgraphs contain nodes with small scene �ow differences
and similar motion describing a rigid object as shown in
Fig. 4(c). The remaining connected components in Fig. 5(a)
of the graph are detected by depth-�rst search [4].

Since the egomotion of the observing vehicle is not
known, the algorithm responds to static parts of the scene
as well. However, static parts describe large 3D volumes or
are typically part of the ground plane. Therefore, objects
exceeding reasonable dimensions are neglected as well as
objects that are part of or not standing on the ground plane.
Both latter criteria are achieved by estimating the parameters
� 1 : : : � 4 of the ground plane

E : � 1X + � 2Y + � 3Z + � 4 = 0 (9)

using a random sample consensus (RANSAC) algorithm.

C. Object Association

The last step is to form tracks produced by the same object
within the considered sequence. The Observation-to-Track
Association is handled by a GNN approach [3]. The position
X ( i )

k � 1 of a detected objectio is predicted for the current time
stepX ( i )

p;k assuming a constant motion within� t. For every

predicted object, a constant track gate is placed aroundX ( i )
p;k

considering acceptable measurement and prediction error as
shown in Fig. 6. If two observations are associated with one
predicted track, the unassigned observation will initiate a
new track. Objects are assumed to appear at least in two
consecutive time steps for con�rmation and only one miss is
accepted before deletion.

The object association results in the detected objects in
Fig. 5(c). The blue erroneous object in Fig. 5(b) is not
detected since it only appears in this very time step. However,
objects are detected with one frame delay such as the police
car, which will initiate a track from the next frame on.



Fig. 6. Global nearest neighbor algorithm. Track gates are set around
the predicted positionsX ( i )

p;k . For unambiguous gates one observation is
assigned to exactly one prediction (X (1) ). For a con�icting prediction such
asX (2)

p;k , the unassigned observationX (3)
k initiates a new track.

V. EXPERIMENTS

For all experiments, we used grayscale images with a
resolution of 1392� 512 pixels. The image sequences
cover rural, suburban and inner city traf�c scenarios. For
all images, at least 2000 interest points were detected. Our
algorithm is implemented in Matlab processing at least one
frame per second on one core of an Intel Core2Duo with
2:4 GHz and4 GB RAM.

To evaluate the capability of the proposed algorithm to
detect objects continuously, the rural traf�c scenario in
Fig. 7 is considered. Two vehicles in front are visible
within 115 frames in a distance of approximately10 m and
35 m respectively. Using the GNN approach described in
chapter IV-C, both cars are detected continuously within
the whole sequence. Approaching cars in this sequence are
detected within at most three time steps after they are fully
visible and at a distance up to25 m. For a greater range
of up to 60 m, objects are detected within �ve time steps.
Since the maximum speed for this scenario is usually limited
to 60km=h, we consider this time period as suf�cient. After
detection of an object at a distance of50 m, there are2 s
remaining for an appropriate reaction. Since our approach
is class-independent, uncommon but moving objects are
detected as well, e.g. the wheelchair user on the left side-
walk in the second frame. We tested the appearance-based
detector of [11] using this image. Since this class was not
trained, the detection of a person or a bike in this image
fails, although for the class car there were detected objects
at close and far range.

Figure 8 shows that the detection at close and far range
up to 60 m works well in a rural environment. For inner
city scenarios as depicted in Fig. 9, cars and pedestrians are
detected. The algorithm fails here for objects in a far range
for more than50 m since stereo reconstruction exhibits a
heavy noise level in depth direction and the background is
highly textured and therefore only few interest points are
detected on objects of interest. The tracks of turning cars
are very short due the assumption of continuous motion.

Fig. 7. Results on a rural road. The cars in front of the observer vehicle
are tracked continuously within15 s. The class-independent method detects
the wheelchair user in the upper left area of the second frame. Static objects
such as the advertisement or trees are detected as objects since egomotion
is not compensated.

Fig. 8. Results on a rural intersection.Close range objects as the cyclist
or the crossing traf�c in the �rst frame are detected as well as objects in
the far range in the second frame.



Fig. 9. Results on inner city intersections.(a) Slowly moving and small objects such as the pedestrian in the �rst two frames are detected in a range up
to 30 m. However, the track of such a small object is interrupted and it is not continuously tracked. Similarly moving groups of pedestrians are detected
as one object since the scene �ow difference is not unique and the number of detected interest points is to low. (b) Moving objects in this sequence are
detected, but especially for the far range static objects are detected as well. (c) Turning cars and partly occluded objects, which where fully visible and
observed in a previous frame, are detected. Since continuous velocity is assumed, the Observation-to-Track association fails for sharply turning objects.

VI. CONCLUSION AND FUTURE WORK

We presented a novel approach for class-independent
object detection for inner-city traf�c scenarios. The pro-
posed algorithm uses computationally ef�cient sparse interest
points in consecutive stereo images to compute the scene
�ow. Clustered points describing a similar scene �ow result
in a robust detection of independently moving rigid objects
in the scene. Our results compared to [22] indicate, that this
approach outperforms a similar method utilizing only optical
�ow for object detection. Due to the class-independent
approach, objects are detected where an appearance-based
object detectors fails which works well for known object
classes. For typical inner-city traf�c scenarios unknown
objects or objects in an uncommon view may occur and in
this case these approaches may be not suf�cient for DAS
applications.

Our next steps will include a more sophisticated multiple
target tracking to improve the distinction between traf�c
participants and erroneously detected objects, handle partly

occluded objects as well as erroneous track gates. Addition-
ally, tracking of objects coming to a stop will be improved.
Further, we want to include egomotion compensation and
a motion model for detected interest points and objects.
Thereby rotation of detected objects will be explicitly con-
sidered. Furthermore, a global solution to remove edges in
the graph structure will be investigated. Although we want to
follow our class-independent approach for object detection
in the �rst step, semantic information should be provided
after the initial object detection for higher-level reasoning,
e.g. for navigation decisions of a DAS. Since most of the
existing large object databases, e.g. [10], are not providing
the required data for our approach, a ground truth data base
for our application will be built up for evaluation.
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