Supplementary Material: Deep Discrete Flow

Fatma Giiney' and Andreas Geiger!-?

! Autonomous Vision Group, MPI for Intelligent Systems, Tiibingen
2Computer Vision and Geometry Group, ETH Ziirich

Abstract. In this supplementary document, we first present addi-
tional experiments to show the convergence of training in Section 1.1
and compare the performance of exact matching against a frequently
used approximate nearest neighbour search library in Section 1.2. We
then show the speed-ups we gain by the strided implementation of the
patch-based dilated convolutions in Section 2.1. We compare the run-
time of forward propagating a full resolution image pair for the different
local and context architectures in Section 2.2 and then report the run-
time for individual stages of our pipeline compared to Discrete Flow in
Section 2.3. For reproducibility, we list the parameter settings of the dif-
ferent stages in Section 3. Finally, we show additional qualitative results
on the MPI Sintel and KITTI validation sets in Section 4.

1 Additional Experiments

1.1 Convergence

—training —training
—validation —validation

w
o

Out-Noc (%)
S S~

S S
Out-Noc (%)
) N
o o«

A A AN AN A~
38 24
20 40 60 80 100 20 40 60 80 100
Iterations Iterations
(a) Local Network (b) Context Network

Fig. 1: Outlier ratio in non-occluded regions over training iterations.
This figure shows the average outlier ratio in non-occluded regions over the
training iterations on KITTTI.

In Fig. 1, we plot the average outlier ratio in non-occluded regions over the
training iterations for both local and context networks on the KITTI training
and validation sets. As concluded in the main paper, we also note that training
the context network on top of the local network decreases outlier ratios signifi-
cantly. Importantly, the training and validation curves behave similarly for both
networks, indicating that our Siamese architectures don’t suffer from overfitting.
In both plots, one iteration corresponds to one hundred thousand batch updates.

2 Fatma Giiney and Andreas Geiger

1.2 Approximate vs. Exact Matching

Formulating optical flow as an approximate nearest neighbour (ANN) search
on the target image is a common way of dealing with the size of the search
space [1-3]. In this section, we show that exact matching can be done as efficiently
utilizing the GPU and show improved results compared to ANN.

We can perform exact matching for grid points on the reference image ef-
ficiently as matrix-matrix multiplication on the GPU. However, there are still
some restrictions due to the limited memory which prevent performing the entire
computation at once. We show our experiments by dividing the set of grid point
into chunks and changing the number of chunks to find a compensation between
memory usage and run-time for different number of matches per grid point in
Table 1.

Number of Chunks|Memory|Run-time Number of Chunks|Memory|Run-time
9 6.63 8.42 9 6.70 5.58
18 3.89 8.34 18 3.94 5.74
45 2.25 3.03 45 2.29 6.53
90 1.71 3.58 90 1.74 6.94
180 1.43 4.52 180 1.46 7.36
306 1.32 6.94 306 1.35 8.42
(a) Number of Matches = 1 (b) Number of Matches = 1024

Table 1: Exact Matching. This table compares different number of chunks
used to compute the exact matching in terms of memory and run-time for two
different number of matches, 1 as in WTA and 1024 as used in BP.

For comparison, we use the popular FLANN library [4] (which has also been
used in [3]) to perform approximate nearest neighbor matching. We found that
the FLANN parameter “number of checks” which specifies the maximum number
of leafs to visit when searching for neighbors has a clear effect on the perfor-
mance. Therefore, we vary the number of checks in Table 2, fixing the number of
search trees to 8. For both datasets, only using 1024 checks yields performance
comparable to exact matching. We also note that run-time for FLANN is much
higher, 45 to 60 seconds depending on the number of checks, when using full
resolution images and a large number of feature maps, 256 as in case of context
architecture 12.

Matching‘Number of Checks‘Out—Noc Matching‘Number of Checks‘Out—Noc

32 30.25% 32 56.09%

FLANN 128 21.21 % FLANN 128 41.09 %

1024 14.56 % 1024 26.19 %

Exact - 12.19 % Exact - 20.28 %
(a) MPI Sintel (b) KITTI

Table 2: Comparison to FLANN. This table compares the performance of
exact matching to approximate matching using the FLANN library [4], varying
the number of checks which specify the maximum number of leafs to visit.

Supplementary Material: Deep Discrete Flow 3
2 Run-time Analysis

2.1 Run-time of Patch-Based Dilated Convolutional Networks

Context Arch.] Naive |Proposed Context Arch.| Naive |Proposed
1 543.37 ms| 15.17 ms 11 823.37 ms| 42.46 ms
2 146.69 ms| 4.80 ms 12 184.88 ms| 9.28 ms
3 58.37 ms| 2.23 ms 13 69.17 ms| 2.79 ms
4 360.41 ms| 6.40 ms 14 417.39 ms| 11.42 ms
5 195.22 ms| 3.60 ms 15 207.55 ms| 4.21 ms
6 63.47 ms| 2.27 ms 16 95.34 ms| 4.41 ms
7 170.60 ms| 7.30 ms 17 201.37 ms| 9.39 ms
8 646.11 ms| 38.77 ms 18 867.846 ms| 55.78 ms
9 1384.48 ms| 11.00 ms 19 2335.74 ms| 26.96 ms

Table 3: Patch-based Dilated Convolutions. This table compares the run-
time of one batch update in milliseconds for the naive and the proposed imple-
mentations using different context architectures with dilated convolutions.

As mentioned in Section 3.1 of the paper, a naive implementation of patch
based dilated convolutions is computationally very inefficient. In Table 3, we
show the speed-ups we gain by the proposed strided convolution implementa-
tion. We measure the average run-time of forward and backward propagation of
a batch of 128 patch pairs followed by normalization and similarity score compu-
tation. As evidenced by our experiments, the proposed implementation leads to
run-time gains up to two orders of magnitude compared to the naive implemen-
tation. In other words, using the naive implementation would require 200 days
for training a model which we train in 2 days using the proposed implementation
for some architectures.

2.2 Run-time Comparison of Different Architectures

In Table 4, we compare the run-time of different local and context architectures
for one forward pass of two full-resolution images. For context, we only report
the additional time after the local architecture 1. Note that this number would
be different depending on the number of feature maps in the last layer of the
local architecture. Using the context architecture 12 on top of local architecture
1, run-time is approximately 2 seconds in total.

2.3 Run-time of Full Deep Discrete Flow Model

In Section 2.2, we compared the run-time of different architectures. In this sec-
tion, we fix the local and context architectures to 1 and 12, respectively, and
perform a run-time analysis of the following stages in our pipeline. In Table 5,
we list the run-time for different parts of the discrete inference together with

4 Fatma Giiney and Andreas Geiger

Context Arch.|Run-time Context Arch.|Run-time

1 1.06 11 1.63

Local Arch.|Run-time 2 0.76 12 0.87
1 1.27 3 0.45 13 0.46

2 1.89 4 0.76 14 0.88

3 2.08 5 0.46 15 0.46

4 2.52 6 0.45 16 0.51

5 2.62 7 1.06 17 1.13

8 1.67 18 2.10

9 1.06 19 1.46

Table 4: Run-time (in sec) of Different Local and Context Architectures
This table compares the run-time of forward propagating two full-resolution
Sintel images using different architectures.

the post-processing and the interpolation. Since these measurements are image
dependent, we take the average run-time per stage over a set of images in the
validation set of each dataset.

We pre-compute pairwise term using parallelism and hashing as in [3], and use
an efficient implementation of Belief Propagation (BP) based on parallel checker-
board update scheme. The parallel BP has a comparable run-time to the Block
Coordinate Descent used in [3] which takes 20 to 25 seconds in total for inference
including the pairwise computation. As shown in Table 5, the slowest part is
refining the data term using non-maxima suppression and adding proposals from
the neighbouring pixels. The post-processing and interpolation run-times are
negligible compared to the discrete inference.

Refining |Pre-computing Belief . .
‘Data Term Pairwise Propagation Post-processing Interpolation
MPI Sintel| 49.97 10.13 5.24 0.002 2.20
KITTI 35.42 14.17 10.54 ’ 1.66

Table 5: Run-time (in sec) Analysis of Individual Stages This table lists
the run-time for different parts of the discrete inference as average over a set of
validation images.

3 Parameter Settings

In this section, we provide the details of the parameter settings used to produce
the results in the paper. Specifically, we list the parameters used in the feature
matching baseline, discrete optimization, and the post-processing.

Table 6 lists the parameters of the Daisy feature descriptor used as baseline
in Section 4.1 in the paper. The first column corresponds to the parameters used
in Discrete Flow [3] and the second column to the optimized parameters on MPI
Sintel.

Table 7 shows the parameters of the discrete optimization and the post-
processing. We optimized over these parameters using BCD on the validation

Supplementary Material: Deep Discrete Flow 5

Parameter ‘DF []‘Optimized
Radius 5 10
Radius Quantization No. 4 4
Angular Quantization No. 4 8
Histogram Quantization No.| 4 8
Normalization Type 2 2

Table 6: Feature Matching Baseline Parameters. Here, we show the values
of the parameters from Discrete Flow [3] and optimized for the feature matching
baseline used in the paper.

sets as defined in the paper, to minimize EPE in case of MPI Sintel and the
average outlier ratio in case of KITTI as evaluated by the benchmarks. We
empirically also tested larger values for the size of the label set by keeping
the ratio of number of proposals from neighbors fixed, but did not observe a
significant change in the performance, therefore we fixed the size of the label set
to 300 during the optimization. In addition, we kept the NMS radius and the
stride fixed. We observed that more iterations or a larger truncation threshold of
the pairwise term give slightly better results, but at the cost of higher run-time.
For interpolation, we used the default values as defined in Epic Flow for each
dataset.

Parameter Value
Number of Initial Matches 1024
Size of the Label Set 300
Proposals from Neighbours 210
NMS Radius in Pixels 2
Stride for Discrete CRF in Pixels 4

Truncation Threshold of the Data Term -0.25
Truncation Threshold of the Pairwise Term| 15
Relative Weight of Pairwise Term 0.009
Number of Iterations 10

(a) Discrete Optimization Parameters

Parameter |MPI Sintel KITTI
Similarity Threshold (fw-/bw-check) 7.63 2.83

Minimum Segment Size (outlier removal) 100 277.45
Consistency Threshold (outlier removal) 5 13.01
Epic Flow dataset

(b) Post-processing Parameters

Table 7: Model Parameters. Here, we list the parameter settings used for
discrete optimization in (a), and for post-processing and interpolation in (b).

6 Fatma Giiney and Andreas Geiger

4 Additional Qualitative Results

In this section, we show additional qualitative results which we randomly
picked from the MPI Sintel and the KITTI validation sets. For each case, we
show the input image, ground-truth flow in the first row, results for Discrete
Flow with Daisy Proposals in the second row, local network in the third row,
and the context network in the last row. The first double column shows the flow
result and corresponding error image for the WTA solution, the second double
column shows the results after discrete optimization and the last double column
shows the final results after post-processing and interpolation.

Fig. 2: Qualitiative Results. See text for details.

Supplementary Material: Deep Discrete Flow 7

0755 200
o 4615103

e 3 B

Fig. 3: Qualitiative Results. See text for details.

8 Fatma Giiney and Andreas Geiger

Gy 730% B

ocal-40.36%

DF 0.69% 023
local 0.61%
conv: 0,624 0.21

Fig.4: Qualitiative Results. See text for details.

Supplementary Material: Deep Discrete Flow 9

o s L A |

dconv: 0.34% ‘

Fig.5: Qualitiative Results. See text for details.

10 Fatma Giiney and Andreas Geiger

OF 5.67% 151
local: 6 64%1.27
conv: 6.30%1.29

OF. 64.08% 2543

dconv: 73,3

05061 95
lacal: 51% .05
conv:5,32% 228

Fig. 6: Qualitiative Results. See text for details.

Supplementary Material: Deep Discrete Flow 11

References

1. Bao, L., Yang, Q., Jin, H.: Fast edge-preserving PatchMatch for large displacement
optical flow. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). (2014)

2. Besse, F., Rother, C., Fitzgibbon, A., Kautz, J.: PMBP: PatchMatch Belief Prop-
agation for correspondence field estimation. International Journal of Computer
Vision (IJCV) 110 (2014) 2-13

3. Menze, M., Heipke, C., Geiger, A.: Discrete optimization for optical flow. In: Proc.
of the German Conference on Pattern Recognition (GCPR). (2015)

4. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 36 (2014)
2227-2240

