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Abstract

This paper provides supplementary material for our submission. Herein, we offer additional derivation details for the
geometric solver described in the main paper. First, we show that the original cost can be parameterized to yield a minimum
of 24 solutions. Then, we detail the steps to find the factors of the final approximate solution.

A. Solutions to the Full Cost
In this section we give more details on the derivation of a solver that can find the position of the camera on T2. As opposed

to the approximate solver (which is detailed in Section B), the solver described in this section aims to get the location on T2

globally and exactly by minimizing an energy function. E(u, v) in Eq. 21 is the energy we seek to minimize, i.e.

E(u, v) = ] (P0(u, v), q0)
2
+ ] (P1(u, v), q1)

2
, (A.1)

where u and v are the toroidal coordinates (i.e. they are angles that parameterize a point on the surface of the torus), and
where q0 and q1 are the triangulation rays. Furthermore, we define Pi as the vector from the i-th 3D point to the camera
center C ∈ T2, i.e.

Pi(u, v) = C(u, v)− pi , (A.2)

where pi is the position of the i-th 3D point matched. Note that p0 = −p1 and that r2 = R2 + ‖pi‖2, where R and r are the
major and minor radii of the torus (c.f . Section 3.2 - Toroidal Constraints).

By minimizing E, we ensure that the position on T2 is optimal w.r.t. our assumptions (c.f . Section 3.3 - Triangulation-Ray
Constraints). These imply that we are to minimize the sum of the squares of the angular distances. We define thus

∑
i=0,1

] (Pi(u, v), qi)
2
=
∑
i=0,1

arcsin

(
‖Pi(u, v)× qi‖
‖Pi(u, v)‖

)2

. (A.3)

Here we use the notation C(u, v) since the camera position C can be parameterized as in Eq. 1. However, in order to find
u and v that minimize Eq. A.3 we choose, for simplicity, to instead minimize the square of the sine of the angles between
vectors, i.e.

(u∗, v∗) = argmin
u,v

∑
i=0,1

(
‖Pi(u, v)× qi‖
‖Pi(u, v)‖

)2

= argmin
u,v

∑
i=0,1

fi (C(u, v))
2
. (A.4)

Since we need to find all meaningful minima of Eq. A.4 (c.f . Section 3.4 - A Geometric Solver), we seek a closed for for
all its stationary points. We explored two different parameterizations of the problem for this: trigonometric and Lagrangian.

1All numeric references refer to the main paper.
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A.1. Lagrangian Formulation

In the Lagrangian formulation, we let the 3D position of the camera C = (x, y, z)T ∈ R3 be our unknown and then
enforce that it lies on T2 using Lagrangian multipliers. Implicitly, the surface of a torus is

g(x, y, z) = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2)

= (‖C‖2 − ‖p0‖2)2 − 4R2(‖C‖2 − z2) .
(A.5)

Using this we can express the Lagrangian as

L(x, y, z, λ) =
∑
i=0,1

fi (x, y, z)
2 − λg(x, y, z) . (A.6)

The stationary points are when ∇L(x, y, z, λ) = 0. Immediately, one might see that this gradient will result in a system of
four equations in (x, y, z, λ). Here we detail the derivation of these four equations:

∇xyz f2i =
∂fi(x, y, z)

2

∂(x, y, z)
=

1

‖Pi‖4‖qi‖2
(
‖Pi × qi‖2Pi − ‖Pi‖2qi × (Pi × qi)

)
(A.7a)

∇xyz g = 2(‖C‖2 − ‖p0‖2)C − 4R2(x, y, 0)> (A.7b)

∇L(x, y, z, λ) =
[∑

i=0,1∇xyzf2i + λ∇xyz g
g(x, y, z)

]
4×1

= 04×1 (A.7c)

To analyze the number of solutions for the system of equations, we chose to employ a Gröbner basis technique. To this end,
we need to have only polynomial equations in our system. After some algebraic manipulation, we arrive at three polynomials
of total degree 12 and one polynomial of total degree 4. Using Macaulay2 [1] we find that, under this formulation, there are
up to 47 real solutions. Detailed in the next subsection, we note that we can reduce this to 24 solution by using a different
parameterization.

A.2. Trigonometric Formulation

A simpler solution can be obtained if we use toroidal coordinates, i.e. if we use the angles u and v to express C (c.f . Eq. 1,
but repeated here):

C(u, v) =

(R+ r cos v) cosu
(R+ r cos v) sinu

r sin v

 ∈ T2 . (A.8)

Using this parameterization we can avoid the use of Lagrangian multipliers, which introduce an auxiliary variable (i.e. λ) and
an extra equation. This lets us write the objective function as simply

E(u, v) =
∑
i=0,1

fi (u, v)
2
. (A.9)

However, we need to modify ∇xyzf2i (c.f . Eq. A.7a) to operate in this coordinates. This requires the Jacobian of C(u, v)
w.r.t. u and v,

Juv =

− sinu(R+ r cos v) −r cosu sin v
cosu(R+ r cos v) −r sinu sin v

0 r cos v

 . (A.10)

And thus, the gradient parametric in u and v is

∇uv f2i = ∇xyz f2i · Juv . (A.11)

Once more, getting the final gradient parametric in u and v and setting it to zero gives us our system of equations:∑
i=0,1

∇uvf2i = 02×1 , (A.12)



which are two equations in u and v. This time, however, we cannot convert Eq. A.12 into a polynomial system since it is a
function of sines and cosines of u and v. To do this we have two choices. The first choice is the tangent half-angle substitution
(also known as the Weierstrass substitution) where

sinα =
2t

1 + t2
and cosα =

1− t2

1 + t2
, (A.13)

where t = tan α
2 . This adds no new equations but raises the degree of the equation significantly, since for each trigono-

metric term we introduce a rational quadratic polynomial. The second choice is using the more straightforward “circular”’
substitution

sinα = a and cosα = b , (A.14)

which does not raise the degree of the equations. However, this substitution duplicates the number of variables and adds a
new equation per angle substituted, i.e. a2 + b2 = 1. Once again we can use Macaulay2 to get the number of solutions that
such parameterizations would yield. In the case of the tangent half-angle, we get up to 32 real solutions, whereas the circular
substitution will generate up to 24 real solutions.

B. Derivation Details of the Approximate Solver
Our aim is to find a closed-form solution to Eq. 6. For this we want to find all stationary points of Ê. In Section 3.4 (

A Geometric Solver) we claim that there are 12 such stationary points. To arrive at this number, we again follow a Gröbner
basis method. Expanding Eq. 7 and discarding the common denominator we get

∂Ê

∂v
= (µ0 ρ0 φ0) ξ1 + (µ1 ρ1 φ1) ξ0 = 0 , where

µi =
(
rs2i cos v + r cos v +Rs2i +R

)
ρi = (piz sin v + r +R cos v)

φi = (rsi cos v − r sin v +Rsi − piz) ξi = (sipiz + rsi sin v + r cos v +R) 3 ,

(B.1)

from which we can more easily see that the maximum degree of ∂Ê∂v is cos (v)6. Since we are already dealing with an equation
of quite high total degree (i.e. trigonometric monomials of total degree 6), we opt to make the substitution in Eq. A.14 to
continue our analysis:

cos v = cv sin v = sv . (B.2)

Furthermore, if we were to use the half-tangent angle substitution we would end up with up to 24 solutions. As we will see,
by using this substitution we can get a solution with only 12 roots. Using Eq. B.2 in Eq. B.1 we get

k0c
6
v + k1c

5
vsv + k2c

5
v + k3c

4
vs

2
v + k4c

4
vsv + k5c

4
v + k6c

3
vs

3
v + k7c

3
vs

2
v + k8c

3
vsv + k9c

3
v+

k10c
2
vs

4
v + k11c

2
vs

3
v + k12c

2
vsv + k13c

2
v + k14cvs

5
v + k15cvs

4
v + k16cvs

3
v + k17cvs

2
v + k18cvsv+

k19cv + k20s
5
v + k21s

4
v + k22s

3
v + k23s

2
v + k24sv + k25 = 0

c2v + s2v = 1 ,

(B.3)

where ki = ki(R, r, p0z, p1z, s0, s1) for all i = 0..25 are constants that depend on the torus parameters and the triangulation
ray directions. After inspecting Eq. B.3 with Macaulay2, we find that we can have up to 12 real solutions. As mentioned
in Section 3.4 (A Geometric Solver), we observe that 6 of the 12 solutions are repeated and invalid for our geometric
requirements. Indeed, the terms ρ0 and ξ1 vanish simultaneously if r cos v = −R, i.e. if we plug in an invalid solution then
Eq. B.1 will be zero. This solution corresponds to having the camera position along the circle coincident with either p0 or p1.
At this point the angle between q0 or q1 is undefined.

Thus, we must find a way to solve Eq. B.3 without resorting to a method that will necessarily solve for all 12 solutions,
such as a Gröbner basis approach. If we expand using the tangent half-angle substitution, the equations can more easily be
simplified. Indeed, we can obtain a univariate polynomial in t for which we can efficiently find all real roots using a Sturm-
bracketing plus polishing method [2]. However, we can instead manipulate this polynomial in order to factor out unwanted
terms symbolically. This would result in a much simpler method and we can easily identify and discard the roots that we
know in advance will produce spurious solutions. Namely, under this substitution the invalid roots come from the factor
(r +R+ t2(R− r)), where t = tan (v/2).



Either manually or using a Computer Algebra Program, one can show that one may factor Eq. B.1 to Eq. 8a, i.e.:

0 =(r +R+ t2(R− r))3 · (λ1 + λ2t+ λ3t
2)·

((s1 + s0 + t(4s0s1 − 2)− t2(s0 + s1)) · (fc(t))
(B.4a)

where
λ1 = κ− τ
λ2 = 2r(s0 + s1)(p1z(s1 − s0) +Rs0s1 +R)

λ3 = κ+ τ

(B.4b)

and
κ = R2

(
s20
(
s21 − 1

)
+ 4s0s1 − s21 + 1

)
+

r2
(
s20
(
2s21 + 1

)
+ 2s0s1 + s21 + 2

)
−

2Rp1z
(
s20s1 − s0s21 + s0 − s1

)
τ = r(s0s1 − 1)(p1z(s1 − s0) +Rs0s1 +R) .

(B.4c)

Finally, in Eq. B.4a the factor
fc = (r +R+ t2(R+ r)) (B.5)

has only complex roots

t = ±
√
−(R+ r)√
R+ r

, (B.6)

since r > 0 and R > 0.
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