Andreas Geiger

Publications of Daniel Dauner

SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic
K. Chitta, D. Dauner and A. Geiger
European Conference on Computer Vision (ECCV), 2024
Abstract: SLEDGE is the first generative simulator for vehicle motion planning trained on real-world driving logs. Its core component is a learned model that is able to generate agent bounding boxes and lane graphs. The model's outputs serve as an initial state for rule-based traffic simulation. The unique properties of the entities to be generated for SLEDGE, such as their connectivity and variable count per scene, render the naive application of most modern generative models to this task non-trivial. Therefore, together with a systematic study of existing lane graph representations, we introduce a novel raster-to-vector autoencoder. It encodes agents and the lane graph into distinct channels in a rasterized latent map. This facilitates both lane-conditioned agent generation and combined generation of lanes and agents with a Diffusion Transformer. Using generated entities in SLEDGE enables greater control over the simulation, e.g. upsampling turns or increasing traffic density. Further, SLEDGE can support 500m long routes, a capability not found in existing data-driven simulators like nuPlan. It presents new challenges for planning algorithms, evidenced by failure rates of over 40% for PDM, the winner of the 2023 nuPlan challenge, when tested on hard routes and dense traffic generated by our model. Compared to nuPlan, SLEDGE requires 500x less storage to set up (<4 GB), making it a more accessible option and helping with democratizing future research in this field.
Latex Bibtex Citation:
@inproceedings{Chitta2024ECCV,
  author = {Kashyap Chitta and Daniel Dauner and Andreas Geiger},
  title = {SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic},
  booktitle = {European Conference on Computer Vision (ECCV)},
  year = {2024}
}
Parting with Misconceptions about Learning-based Vehicle Motion Planning
D. Dauner, M. Hallgarten, A. Geiger and K. Chitta
Conference on Robot Learning (CoRL), 2023
Abstract: The release of nuPlan marks a new era in vehicle motion planning research, offering the first large-scale real-world dataset and evaluation schemes requiring both precise short-term planning and long-horizon ego-forecasting. Existing systems struggle to simultaneously meet both requirements. Indeed, we find that these tasks are fundamentally misaligned and should be addressed independently. We further assess the current state of closed-loop planning in the field, revealing the limitations of learning-based methods in complex real-world scenarios and the value of simple rule-based priors such as centerline selection through lane graph search algorithms. More surprisingly, for the open-loop sub-task, we observe that the best results are achieved when using only this centerline as scene context (ie, ignoring all information regarding the map and other agents). Combining these insights, we propose an extremely simple and efficient planner which outperforms an extensive set of competitors, winning the nuPlan planning challenge 2023.
Latex Bibtex Citation:
@inproceedings{Dauner2023CORL,
  author = {Daniel Dauner and Marcel Hallgarten and Andreas Geiger and Kashyap Chitta},
  title = {Parting with Misconceptions about Learning-based Vehicle Motion Planning},
  booktitle = {Conference on Robot Learning (CoRL)},
  year = {2023}
}


eXTReMe Tracker