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Abstract. In CNN-based object detection methods, region proposal be-
comes a bottleneck when objects exhibit significant scale variation, oc-
clusion or truncation. In addition, these methods mainly focus on 2D
object detection and cannot estimate detailed properties of objects. In
this paper, we propose subcategory-aware CNNs for object detection.
We introduce a novel region proposal network that uses subcategory in-
formation to guide the proposal generating process, and a new detection
network for joint detection and subcategory classification. By using sub-
categories related to object pose, we achieve state-of-the-art performance
on both detection and pose estimation on commonly used benchmarks.

Keywords: Subcategory, Convolutional Neural Network, Region Pro-
posal, Object Detection, Object Pose Estimation

1 Introduction

Convolutional Neural Networks (CNNs) have become dominating in solving dif-
ferent recognition problems recently. CNNs are powerful due to their capability in
both representation and learning. With millions of weights in the contemporary
CNNs, they are able to learn much richer representations from data compared
to traditional “non-CNN” methods. In object detection, we have witnessed the
performance boost when CNNs [1,2] are applied to commonly used benchmarks
such as PASCAL VOC [3] and ImageNet [4].

However, there are two main limitations of the state-of-the-art CNN-based
object detection methods [5,6,7]. First, they rely on region proposal methods
[8,9,10] to generate object candidates, which are often based on low-level image
features such as superpixels or edges. Although these methods work very well
on PASCAL VOC [3] and ImageNet [4], however, when it comes to the KITTI
dataset for autonomous driving [11] where objects have large scale variation,
occlusion and truncation, these region proposal methods perform very poor as
observed in our experiments. Recently, the Region Proposal Network (RPN) in
[7] is able to improve over the traditional region proposal methods. However, it
still cannot efficiently handle the scale change of object, occlusion and truncation.
Second, the existing CNN-based object detection methods mainly focus on 2D
object detection with bounding boxes. As a result, they are not able to estimate
detailed information about objects such as 2D segmentation boundary, 3D pose
or occlusion relationship between objects, while these information is critical for
various applications like autonomous driving, robotics and augmented reality.
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Fig. 1. Overview of our object detection framework. By exploiting subcategory infor-
mation, we propose a new CNN architecture for region proposal and a new object
detection network for joint detection and subcategory classification.

In this work, we explore subcategory information, which is widely used in tra-
ditional object detection [12,13,14], to tackle the aforementioned two limitations
in CNN-based object detection. For region proposal generation, we introduce a
new CNN architecture that uses subcategory detections as object candidates.
For detection, we modify the network in Fast R-CNN [6] for joint detection and
subcategory classification. Fig. 1 illustrates our object detection framework. The
concept of subcategory is general here. A subcategory can be objects with sim-
ilar properties or attributes such as 2D appearance, 3D pose or 3D shape. By
associating object attributes to subcategories, we are able to estimate these at-
tributes (e.g., 2D segmentation boundary or 3D pose) by conducting subcategory
classification in our method.

Specifically, motivated by the traditional detection methods that train a tem-
plate or a detector for each subcategory, we introduce a subcategory convolutional
(conv) layer in our Region Proposal Network (RPN), where each filter in the
conv layer is trained discriminatively for subcategory detection. The subcategory
conv layer outputs heat maps about the presence of certain subcategories at a
specific location and scale. Using these heat maps, our RPN is able to output
confident subcategory detections as proposals. For classifying region proposals
and refining their locations, we introduce a new object detection network by
injecting subcategory information into the network proposed in Fast R-CNN [6].
Our detection network is able to perform object detection and subcategory clas-
sification jointly. By using 3DVP [14] as subcategories, our method is able to
jointly detect the object, estimate its 3D pose, segment its boundary and esti-
mate its occluded or truncated regions. In addition, in both our RPN and our
detection CNN, we use image pyramids as input, and we introduce a new feature
extrapolating layer to efficiently compute conv features in multiple scales. In this
way, our method is able to detect object categories with large scale variations.

We conduct experiments on the KITTI detection benchmark [11], the PAS-
CAL3D+ dataset [15] and the PASCAL VOC 2007 dataset [16]. Comparisons
with the state-of-the-art detection methods on these benchmarks demonstrate
the advantages of our subcategory-aware CNNs for object detection.
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2 Related Work

Subcategory in Object Detection. Subcategory has been widely utilized
to facilitate object detection, and different methods of discovering object sub-
categories have been proposed. In DPM [12], subcategories are discovered by
clustering objects according to the aspect ratio of their bounding boxes. [17]
performs clustering according to the viewpoint of the object to discover sub-
categories. Visual subcategories are constructed by clustering in the appearance
space of object [18,13,19,20]. 3DVP [14] performs clustering in the 3D voxel
space according to the visibility of the voxels. Unlike previous works, we utilize
subcategory to improve CNN-based detection, and our framework is general to
employ different types of object subcategories.

CNN-based Object Detection. We can categorize the state-of-the-art CNN-
based object detection methods into two classes: one-stage detection and two-
stage detection. In one-stage detection, such as the Overfeat [21] framework, a
CNN directly processes an input image, and outputs object detections. In two-
stage detection, such as R-CNNs [5,6,7], region proposals are first generated
from an input image, where different region proposal methods can be employed
[8,9,10]. Then these region proposals are fed into a CNN for classification and lo-
cation refinement. It is debatable which detection paradigm is better. We adopt
the two-stage detection framework in this work, and consider the region pro-
posal process to be the coarse detection step in coarse-to-fine detection [22]. We
propose a novel RPN motivated by [7], and demonstrate its advantages over the
previous region proposal methods on the challenging KITTI dataset [11].

3 Subcategory-aware RPN

Ideally, we want to have a region proposal approach that can cover objects in an
input image with as few proposals as possible. Since objects in images appear
at different locations and scales, region proposal itself is a challenging problem.
Recently, [7] proposed to tackle the region proposal problem with CNNs, demon-
strating the advantages of using CNNs over traditional approaches for region
proposal. In this section, we describe our subcategory-aware Region Proposal
Network (RPN).

3.1 Network Architecture

We introduce a novel network architecture for generating object proposals from
images. The architecture is inspired by the traditional sliding-window-based ob-
ject detectors, such as the Aggregated Channel Feature (ACF) detector [23] and
the Deformable Part Model (DPM) [12]. Fig. 2 illustrates the architecture of our
region proposal network. i) To handle different scales of objects, we input into
our RPN an image pyramid. This pyramid is processed by several convolutional
(conv) and max pooling layers to extract the conv feature maps, with one conv
feature map for each scale. ii) In order to speed up the computation of conv
features on image pyramids, we introduce the feature extrapolating layer, which
generates feature maps for scales that are not covered by the image pyramid
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Fig. 2. Architecture of our region proposal network. Red arrows indicate the route of
derivatives in back-propagation training.

via extrapolation. iii) After computing the extrapolated conv feature maps, we
specifically design a conv layer for object subcategory detection, where each fil-
ter in the conv layer corresponds to an object subcategory. We train these filters
to make sure they fire on correct locations and scales of objects in the corre-
sponding subcategories during the network training. The subcategory conv layer
outputs a heat map for each scale, where each value in the heat map indicates
the confidence of an object in the corresponding location, scale and subcategory.
v) Using the subcategory heat maps, we design a RoI generating layer that gen-
erates object candidates (RoIs) by thresholding the heat maps. vi) The RoIs are
used in a RoI pooling layer [6] to pool conv features from the extrapolated conv
feature maps. vii) Finally, our RPN terminates at two sibling layers: one that
outputs softmax probability estimates over object subcategories, and the other
layer that refines the RoI location with a bounding box regressor.

3.2 Feature Extrapolating Layer

In our RPN, we use fixed-size conv filters in the subcategory conv layer to local-
ize objects (e.g., 5× 5 conv filters). In order to handle different scales of objects,
we resort to image pyramids. An image pyramid consists of images with differ-
ent resolutions obtained by rescaling the original image according to different
sampled scales. After constructing the image pyramid for an input image, multi-
resolution conv feature maps can be computed by applying several conv layers
and max pooling layers to each image in the pyramid (Fig. 2). If we perform
convolution on every scale explicitly, it is computationally expensive, especially
when a finely-sampled image pyramid is needed as in the region proposal pro-
cess. In [23], Dollár et al. demonstrate that multi-resolution image features can
be approximated by extrapolation from nearby scales rather than being com-
puted explicitly. Inspired by their work, we introduce a feature extrapolating
layer to accelerate the computation of conv features on an image pyramid.

Specifically, a feature extrapolating layer takes as input N feature maps that
are supplied by the last conv layer for feature extraction, where N equals to
the number of scales in the input image pyramid. Each feature map is a multi-
dimensional array of size H×W ×C, with H rows, W columns, and C channels.
The width and height of the feature map corresponds to the largest scale in the
image pyramid, where images in smaller scales are padded with zeros in order
to generate feature maps with the same size. The feature extrapolating layer
constructs feature maps at intermediate scales by extrapolating features from the
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nearest scales among the N scales using bilinear interpolation. Suppose we add
M intermediate scales between every ith scale and (i+1)th scale, i = 1, . . . , N−1.
The output of the feature extrapolating layer isN ′ = (N−1)M+N feature maps,
each with size H×W×C. Since extrapolating a multi-dimensional array is much
faster than computing a conv feature map explicitly, the feature extrapolating
layer speeds up the feature computation on image pyramids with less memory.

3.3 Subcategory Conv Layer

After computing the conv feature maps, we design a subcategory conv layer for
subcategory detection. Motivated by the traditional object detection methods
that train a classifier or a template for each subcategory [12,24,14], we train
a conv filter in the subcategory conv layer to detect a specific subcategory.
Suppose there are K subcategories to be considered. Then, the subcategory conv
layer consists of K + 1 conv filters with one additional conv filter for a special
“background” category. For multi-class detection (e.g., car, pedestrian, cyclist,
etc.), the K subcategories are the aggregation of all the subcategories from all
the classes. These conv filters operate on the extrapolated conv feature maps
and output heat maps that indicate the confidences of the presence of objects
in the input image. We use fixed-size conv filters in this layer (e.g., 5 × 5 × C
conv filters), which are trained to fire on specific scales in the feature pyramid.
Sec. 3.5 explains how we back-propagate errors from the loss layer to train these
subcategory conv filters.

3.4 RoI Generating Layer

The RoI generating layer takes as input N ′ heat maps and outputs a set of
region proposals (RoIs), where N ′ is the number of scales in the feature pyramid
after extrapolation. Each heat map is a multi-dimensional array of size H×W ×
K for K subcategories (i.e., for RoI generating, we ignore the “background”
channel in the heat map). The RoI generating layer first converts each heat
map into a H ×W 2D array by performing max operation over the channels
for subcategory. Then, it thresholds the 2D heat map to generate RoIs. In this
way, we measure the objectness of a region by aggregating information from
subcategories. Different generating strategies are used in testing and training.

In testing, each location (x, y) in a heat map with a score larger than a
predefined threshold is used to generate RoIs. First, a canonical bounding box is
centered on (x, y). The width and height of the box are the same as those of the
conv filters (e.g., 5×5) in the subcategory conv layer, which have an aspect ratio
one. Second, a number of boxes centered on (x, y) with the same areas as the
canonical box (e.g., 25) but with different aspect ratios are generated. Finally,
the RoI generating layer rescales the generated boxes according to the scale of
the heat map, so as to cover objects in different scales and aspect ratios.

In training, the RoI generating layer outputs hard positive RoIs and hard
negative RoIs for training the subcategory conv filters, given a budget on batch
size in stochastic gradient descent. First, we use the same procedure as de-
scribed in testing to generate a number of bounding boxes for each location in
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each heat map. Second, according to the ground truth bounding boxes of ob-
jects in a training image, we compute the intersection over union (IoU) overlap
between the generated boxes and the ground truth boxes. Bounding boxes with
IoU overlap larger/smaller than some threshold (e.g., 0.5) are considered to be
positive/negative. Finally, given the number of RoIs to be generated for each
training image R (i.e., batch size divided by the number of images in a batch),
the RoI generating layer outputs R×α hard positives (i.e., R×α positive bound-
ing boxes with lowest scores in the heat maps) and R × (1− α) hard negatives
(i.e., R× (1−α) negative bounding boxes with highest scores in the heat maps),
where α ∈ (0, 1) is the percentage of positive examples.

3.5 Network Training

After generating RoIs, we apply the RoI pooling layer proposed in [6] to pool
conv features for each RoI. Then the pooled conv features are used for two
tasks: subcategory classification and bounding box regression. As illustrated in
Fig. 2, our RPN has two sibling output layers. The first layer outputs a discrete
probability distribution p = (p0, . . . , pK), over K + 1 subcategories, which is
computed by applying a softmax function over the K + 1 outputs of the sub-
category conv layer. The second layer outputs bounding box regression offsets
tk
′

= (tk
′

x , t
k′

y , t
k′

w , t
k′

h ), k′ = 0, 1, . . . ,K ′ for K ′ object classes (K ′ � K). We pa-

rameterize tk
′

as in [5], which specifies a scale-invariant translation and log-space
width/height shift relative to a RoI.

We employ a multi-task loss as in [6] to train our RPN for joint subcategory
classification and bounding box regression:

L(p, k∗, k′∗, t, t∗) = Lsubcls(p, k
∗) + λ[k′∗ ≥ 1]Lloc(t, t

∗), (1)

where k∗ and k′∗ are the truth subcategory label and the true class label re-
spectively, Lsubcls(p, k

∗) = − log pk∗ is the standard cross-entropy loss, t∗ =
(t∗x, t

∗
y, t
∗
w, t
∗
h) is the true bounding box regression targets for class k′∗, and

t = (tx, ty, tw, th) is the prediction for class k′∗. We use the smoothed L1 loss
defined in [6] for the bounding box regression loss Lloc(t, t

∗). The indicator func-
tion [k′∗ ≥ 1] indicates that bounding box regression is ignored if the RoI is
background (i.e., k′∗ = 0). λ is a predefined weight to balance the two losses.

In training, derivatives from the loss function are back-propagated (see red
arrows in Fig. 2). The two subcategory conv layers in our RPN share their
weights. These weights/conv filters are updated according to the derivatives from
the softmax loss function for subcategory classification, so we are able to train
these filters for subcategory detection. There is no derivative flow in computing
heat maps using the subcategory conv layer and in the RoI generating layer.
Finally, our RPN generates confident subcategory detections as region proposals.

3.6 Comparison with the RPN in [7]

We point out the main differences between our RPN architecture and the one
in Faster R-CNN [7]. First, we handle multi-scales with image pyramids and
feature extrapolation, while [7] uses single scale image as input, but rescales the
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Fig. 3. Architecture of our object detection network. Red arrows indicate the route of
derivatives in back-propagation training.

proposal boxes. Second, our RPN is trained for subcategory detection, while
the one in [7] is trained to detect objectness directly. Third, our RPN has the
ability to harness hard training examples in our RoI generating layer. Overall, our
architecture can better handle large scale variation and benefit from subcategory
information, which is verified by our experiments in Sec. 5.

4 Subcategory-aware Detection Network
After the region proposal process, CNNs are utilized to classify these proposals
and refine their locations [5,6,7]. Since region proposal significantly reduces the
search space, more powerful CNNs can be used in the detection step, which usu-
ally contain several fully connected layers with high dimensions. In this section,
we introduce our subcategory-aware object detection network for joint detection
and subcategory classification.

4.1 Network Architecture

Fig. 3 illustrates the architecture of our detection network. The network is con-
structed based on the Fast R-CNN detection network [6] with a number of im-
provements. i) We use image pyramids to handle the scale variation of objects.
After the last conv layer for feature extraction, we add the feature extrapolating
layer to increase the number of scales in the conv feature pyramid. ii) Given
the region proposals generated from our RPN, we employ a RoI pooling layer
to pool conv features for each RoI. Each RoI is mapped to a scale in the conv
feature pyramid such that smaller RoIs pool features from larger scales. iii) The
pooled conv features are fed into three fully connected (FC) layers, where the
last FC layer is designed for subcategory classification. For K subcategories, the
“subcategory FC” layer outputs a K+ 1 dimensional vector with one additional
dimension for the background class. We consider the output, named RoI feature
vector, to be an embedding in the subcategory space. iv) Finally, the network ter-
minates at three output layers. The first output layer applies a softmax function
directly on the output of the “subcategory FC” layer for subcategory classifica-
tion. The other two output layers operate on the RoI feature vector and apply
FC layers for object class classification and bounding box regression.

4.2 Network Training

We train our object detection network with a multi-task loss for joint object
class classification, subcategory classification and bounding box regression:

L(p, k∗, p′, k′∗, t, t∗) = Lsubcls(p, k
∗) +λ1Lcls(p

′, k′∗) +λ2[k′∗ ≥ 1]Lloc(t, t
∗), (2)
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#images #cars #pedestrians #cyclists

Train set 3,682 14,898 3,154 916

Validation set 3,799 13,714 1,333 711

Total 7,481 28,612 4,487 1,627

Table 1. Statistics on the KITTI training set.

where p = (p0, . . . , pK) is a probability distribution overK+1 subcategories, p′ =
(p′0, . . . , p

′
K′) is a probability distribution over K ′+1 object classes, k∗ and k′∗ are

the truth subcategory label and the true class label respectively, t and t∗ are the
predicted vector and the true vector for bounding box regression respectively,
and λ1 and λ2 are predefined weights to balance the losses of different tasks.
Lsubcls(p, k

∗) = − log pk∗ and Lcls(p
′, k′∗) = − log p′k′∗ are the standard cross-

entropy loss, and Lloc(t, t
∗) is the smoothed L1 loss as in our RPN. In back-

propagation training, derivatives for the multi-task loss are back-propagated to
the previous layers. Red arrows in Fig. 3 indicate the route of the derivative flow.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate our object detection framework on the KITTI detection
benchmark [11], the PASCAL3D+ dataset [15] and the PASCAL VOC 2007
dataset [16]. i) The KITTI dataset consists of video frames from autonomous
driving scenes, with 7,481 images for training and 7,518 images for testing. Car,
pedestrian and cyclist are evaluated for object detection. Since the ground truth
annotations of the KITTI test set are not released, we split the KITTI training
images into a train set and a validation set for analyses. We follow the same
splitting as in [14]. Table 1 summarizes the statistics on the KITTI training set.
ii) The PASCAL3D+ dataset augments 12 rigid categories in the PASCAL VOC
2012 [3] with 3D annotations. Each object in the 12 categories is registered with
a 3D CAD model. The train set of PASCAL VOC 2012 is used for training (5,717
images), while the val set is used for testing (5,823 images). Table 2 summarizes
the statistics on PASCAL3D+. iii) The PASCAL VOC 2007 dataset contains
5,011 training images and 4,952 testing images on 20 categories.

#images#aeros#bikes#boats#bottles#buses#cars#chairs#tables#mbikes#sofas#trains#tvs

Training Set 5,717 470 410 508 749 317 1,191 1,457 373 375 399 327 412

Test Set 5,823 484 380 491 733 320 1,173 1,449 374 376 387 329 414

Table 2. Statistics on the PASCAL3D+ dataset.

Evaluation Metrics. On KITTI, we evaluate our detection framework at three
levels of difficulty as suggested by [25], i.e., easy, moderate and hard, where the
difficulty is measured by the minimal scale of object to be considered and the
occlusion and truncation of the object. Average Precision (AP) [3] is used to mea-
sure the detection performance, where 70%, 50%, and 50% overlap thresholds are
adopted by the KITTI benchmark for car, pedestrian and cyclist respectively.
To evaluate joint detection and orientation estimation on KITTI, [11] intro-
duces Average Orientation Similarity (AOS), which evaluates the orientation
similarity between detections and ground truths at different detection recalls.
[14] introduces Average Segmentation Similarity (ASS) for joint detection and
segmentation, and Average Location Similarity (ALS) for joint detection and
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3D location similar to AOS. We also use these metrics here. On PASCAL3D+
and PASCAL VOC 2007, the standard AP with 50% overlap ratio is adopted
to evaluate object detection. For joint detection and pose estimation, we use
the Average Viewpoint Precision (AVP) suggested by [15], where a detection is
considered to be a true positive if its location and viewpoint are both correct.

Subcategories. We experiment with both 2D subcategories and 3D subcate-
gories. For 2D subcategories, we cluster objects using 2D image features (i.e.,
aggregated channel features from [23]). So only bounding box annotations are
needed for 2D subcategories. When additional annotations are available, we can
obtain 3D subcategories. We adopt the 3D Voxel Pattern (3DVP) representation
[14] for rigid objects (i.e., car in KITTI and the 12 categories in PASCAL3D+),
which jointly models object pose, occlusion and truncation in the clustering pro-
cess. Each 3DVP is considered to be a subcategory. For pedestrian and cyclist
in KITTI, we perform clustering according to the orientation of the object, and
each cluster is considered to be a subcategory. In this way, by subcategory classi-
fication, we can transfer the meta data carried by 3DVPs (3D pose, segmentation
boundary and occluded regions) to the detected object.

For validation on KITTI (3,682 images for training, 3,799 images for testing),
we use 173 subcategories (125 3DVPs for car, 24 poses for pedestrian and cyclist
each), while for testing on KITTI (7,481 images for training, 7,518 images for
testing), we use 275 subcategories (227 3DVPs for car, 24 poses for pedestrian
and cyclist each). 3DVPs are discovered with affinity propagation clustering [26],
which automatically discovers the number of clusters from the data. For PAS-
CAL3D+, 337 3DVPs are discovered among the 12 categories. For PASCAL
VOC 2007, we use 240 2D subcategories, with 12 for each class. Correspond-
ingly, the output number of the subcategory conv layer in our RPN and that
of the subcategory FC layer in our detection network equal to the number of
subcategory plus one.

Region Proposal Network Hyper-parameters. In our RPN, we use 5 scales
for KITTI in the input image pyramid (0.25, 0.5, 1.0, 2.0, 3.0) and 4 scales for
PASCAL (0.25, 0.5, 1.0, 2.0) (both PASCAL3D+ and PASCAL VOC 2007), where
each number indicates the rescaling factor with respect to the original image size.
Objects in PASCAL have smaller scale variation compared to objects in KITTI.
Adding larger scales for PASCAL only results in marginal improvement but
significantly increases the computation. The feature extrapolating layer extrap-
olates 4 scales with equal intervals between every two input scales, so the final
conv feature pyramid has 21 scales for KITTI and 16 scales for PASCAL. In
the RoI generating layer, each location in a heat map generates 7 boxes with
7 different aspect ratios (3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25) for KITTI and 5 aspect
ratios (3.0, 2.0, 1.0, 0.5, 0.25) for PASCAL, where each number indicates the ratio
between the height and the width of the bounding box. In training the RPN,
each SGD mini-batch is constructed from a single image, chosen uniformly at
random. A mini-batch has size 128, with 64 positive RoIs and 64 negative RoIs,
where the IoU threshold is 70% for both KITTI and PASCAL.
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Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Car Pedestrian Cyclist

Selective Search [8] 58.17 42.12 37.62 68.95 57.65 52.57 57.05 49.59 49.44

Edge Boxes [9] 81.40 61.84 55.68 86.15 71.88 65.39 56.11 46.52 45.72

RPN [7] 98.84 97.37 95.31 98.88 91.69 88.64 96.55 91.80 89.41

Ours 99.27 96.28 93.14 99.44 93.46 91.02 99.67 93.03 91.64

Table 3. Region proposal performance in terms of recall on the KITTI validation set.

Detection Network Hyper-parameters. In our detection network, we use
4 scales in the input image pyramid (1.0, 2.0, 3.0, 4.0) for KITTI and 2 scales
(1.0, 2.0) for PASCAL, both with 4 scales extrapolated between every two scales.
Each SGD mini-batch is constructed from 2 images. A mini-batch has size 128,
with 64 RoIs from each image. 25% of the RoIs are positive, where the IoU
threshold is 70% for car in KITTI, and 50% for the other categories. The same
SGD hyper-parameters are used as in [6] for region proposal and detection.

Fine-tuning Pre-trained Networks. Our framework is implemented in Caffe
[27]. Instead of training our RPN and detection CNN from scratch, we initialize
the conv layers for feature extraction in both networks and the two FC layers
before subcategory FC layer in the detection network with pre-trained networks
on ImageNet [4]. On KITTI, we fine-tune the AlexNet [1]. On PASCAL, we
fine-tune the deep VGG16 network [2]. Since we uses more scales on KITTI, we
cannot use the VGG16 network due to GPU memory constraints.

5.2 Analysis on KITTI Validation Set

Region Proposal Evalutaion on Recall. We evaluate the detection recall of
our RPN and compare it with the state-of-the-art methods in Table 3 on the
KITTI validation set. For each image, we use 2k proposals for all the methods.
First, two popular methods that work well on PASCAL VOC [3], Selective Search
[8] and Edge Boxes [9], do not perform well on KITTI, mainly because objects
in KITTI exhibit more significant scale variation, occlusion and truncation. It
is challenging for a bottom-up proposal method to achieve high recall under a
small budget (i.e, 2k boxes per image). Second, the RPN in Faster R-CNN [7]
performs much better than Selective Search and Edge Boxes, which demonstrates
the ability of discriminatively trained CNNs for region proposal. But we have
to increase its parameter setting from 3 scales and 3 aspect ratios in [7] to 10
scales and 7 aspect ratios in order to make it work on KITTI. Finally, our RPN
performs on par with Faster R-CNN on car, and outperforms it on pedestrian
and cyclist using the same number of proposals per image. Our new architecture
can better handle scale variation using image pyramid. It also benefits from data
mining hard training examples in our RoI generating layer.

Region Proposal Evalutaion on Detection and Oritentaion Estima-
tion. Detection recall measures the coverage of region proposals, which cannot
demonstrate the quality of the region proposals for detection. In this experiment,
we directly measure the detection and orientation estimation performance using
different region proposals. Table 4 presents the detection and orientation esti-
mation results using RPN in Faster R-CNN [7] and the RPN we propose, while
keeping the detection network the same as described in Sec. 4. We compare our
RPN with two variations of the RPN in Faster R-CNN. For the first model, the



SubCNNs for Object Proposals and Detection 11

Object Detection (AP) Orientation (AOS)

Methods Easy Moderate Hard Easy Moderate Hard

Car

RPN [7]+Our det. net (unshared) 89.29 82.58 70.12 87.70 80.47 67.83

RPN [7]+Our det. net (shared) 87.67 82.21 70.10 86.58 80.27 67.90

Ours (unshared) 95.77 86.64 74.07 94.55 85.03 72.21

Pedestrian

RPN [7]+Our det. net (unshared) 83.07 69.32 63.46 71.43 58.67 53.58

RPN [7]+Our det. net (shared) 82.73 68.28 62.30 70.31 56.94 51.87

Ours (unshared) 86.43 69.95 64.03 73.91 58.91 53.79

Cyclist

RPN [7]+Our det. net (unshared) 69.23 54.83 51.41 61.25 46.44 43.07

RPN [7]+Our det. net (shared) 71.24 56.69 52.91 63.21 48.68 45.16

Ours (unshared) 74.92 59.13 55.03 65.79 50.46 46.57

Table 4. AP/AOS comparison using different region proposals but the same detection
network on the KITTI validation set.

Object Detection (AP) Orientation (AOS)

Methods Easy Moderate Hard Easy Moderate Hard

Car

RPN [7] + [6] 82.91 77.83 66.25 N/A N/A N/A

Our RPN + [6] 95.14 85.20 72.12 N/A N/A N/A

Ours w/o Pose 94.66 84.94 72.43 N/A N/A N/A

Ours w/o Extra 95.51 86.29 73.68 94.26 84.69 71.80

Ours Full 95.77 86.64 74.07 94.55 85.03 72.21

Pedestrian

RPN [7] + [6] 83.31 68.39 62.56 N/A N/A N/A

Our RPN + [6] 85.96 68.55 62.55 N/A N/A N/A

Ours w/o Pose 83.22 67.61 62.03 N/A N/A N/A

Ours w/o Extra 84.86 68.87 63.09 74.05 59.06 54.05

Ours Full 86.43 69.95 64.03 73.91 58.91 53.79

Cyclist

RPN [7] + [6] 56.36 46.36 42.77 N/A N/A N/A

Our RPN + [6] 71.00 55.88 51.72 N/A N/A N/A

Ours w/o Pose 71.12 57.52 53.77 N/A N/A N/A

Ours w/o Extra 71.23 55.56 51.61 61.89 47.30 43.69

Ours Full 74.92 59.13 55.03 65.79 50.46 46.57

Table 5. Comparison of different detection networks on the KITTI validation set.

RPN and the detection network are trained independently to each other (“un-
shared”). For the second model, the RPN and the detection network share their
conv layers for feature extraction in order to save computation on convolution
(“shared”). The sharing is achieved by the four-step alternating optimization
training algorithm described in [7]. By comparing the two models in Table 4, we
find that sharing conv layers hurts the performance on car and pedestrian, but
improves the performance on cyclist. According to the statistics in Table 1, car
and pedestrian have much more training examples available than cyclist. With
enough training data, the RPN and the detection network trained independently
can develop conv features suitable for its own task. In this case, shared conv fea-
tures degrade the performance. However, when the training data is insufficient,
sharing conv features can help.

In Table 4, by using region proposals from our RPN, we achieve better per-
formance on detection and orientation estimation across all the three categories.
The experimental results demonstrate the advantages of our RPN. We also tried
to share the conv layers in our RPN and our detection network. However, since
the architecture of our RPN after the conv layers for feature extraction is quite
different from that of the detection network, we found that the training cannot
converge, which verifies our observation that the RPN and the detection network
have developed their own conv features that are suitable for its own task.

Detection Network Evalutaion. In Table 5, we first show that our RPN
achieves significantly better performance than the RPN in [7] when the two
RPNs are used with Fast R-CNN [6] on the KITTI validation set respectively.
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Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Detection & Segmentation (ASA) Detection & 3D Loc.<2m (ALA) Detection & 3D Loc.<1m (ALA)

DPM [12] 38.09 29.42 22.65 40.21 29.02 22.36 24.44 18.04 14.13

3DVP [14] 65.73 54.60 45.62 66.56 51.52 42.39 45.61 34.28 27.72

Ours 73.64 66.22 56.34 70.52 56.20 47.03 39.28 31.04 25.96

Table 6. 2D segmentation and 3D location of car on the KITTI validation set.

Then, we use region proposals from our RPN and compare different variations
of the network architecture for detection. i) “Ours w/o Pose” indicates using
2D subcategories from clustering on 2D appearances of objects without using
additional pose information. As we can see, our method still outperforms Fatser
R-CNN [7] in this case. ii) By using pose information to obtain subcategories,
our detection network is also able to estimate the orientation of the object. “Ours
w/o Extra” refers to a network without feature extrapolating. By augmenting
the network with the feature extrapolating layer, our full model (“Ours Full” in
Table 5) further boosts the detection and orientation estimation performance,
except for a minor drop on orientation estimation of pedestrian.

Evaluation on 2D Segmentation and 3D Localization. 3DVPs enable us
to transfer the meta data to the detect objects. So our method is able to segment
the boundary of object. In addition, after detecting the objects and estimating
their 3D poses, we can back-project them into 3D using the camera parameters
provided in KIITI, so as to evaluate the 3D localization performance. In table
6, we compare our method on 2D segmentation and 3D localization of car with
DPM [12] and 3DVP [14] on the KITTI validation set. We have significantly
improve the segmentation accuracy and 3D location accuracy when the 2-meter
threshold is used (i.e., a detection within 2 meters from the ground truth location
is considered to be correct). Surprisingly, [14] obtains better 3D localization
accuracy with the 1-meter threshold, which indicates that more detections from
[14] are within the 1-meter distance from the ground truth.

Object Detection (AP) Orientation (AOS)

Methods Easy Moderate Hard Easy Moderate Hard

Car

ACF [23] 55.89 54.74 42.98 N/A N/A N/A

DPM [12] 68.02 56.48 44.18 67.27 55.77 43.59

DPM-VOC+VP [28] 74.95 64.71 48.76 72.28 61.84 46.54

OC-DPM [29] 74.94 65.95 53.86 73.50 64.42 52.40

SubCat [13] 84.14 75.46 59.71 83.41 74.42 58.83

Regionlets [30] 84.75 76.45 59.70 N/A N/A N/A

AOG [31] 84.80 75.94 60.70 33.79 30.77 24.75

Faster R-CNN [7] 86.71 81.84 71.12 N/A N/A N/A

3DVP [14] 87.46 75.77 65.38 86.92 74.59 64.11

3DOP [32] 93.04 88.64 79.10 91.44 86.10 76.52

SubCNN (Ours) 90.74 88.55 77.95 90.49 87.88 77.10

Pedestrian

ACF [23] 44.49 39.81 37.21 N/A N/A N/A

DPM [12] 47.74 39.36 35.95 43.58 35.49 32.42

DPM-VOC+VP [28] 59.48 44.86 40.37 53.55 39.83 35.73

FilteredICF [33] 67.65 56.75 51.12 N/A N/A N/A

DeepParts [34] 70.49 58.67 52.78 N/A N/A N/A

Regionlets [30] 73.14 61.15 55.21 N/A N/A N/A

Faster R-CNN [7] 78.86 65.90 61.18 N/A N/A N/A

3DOP [32] 81.78 67.47 64.70 72.94 59.80 57.03

SubCNN (Ours) 79.13 66.13 61.27 72.61 59.40 54.78

Cyclist

DPM [12] 35.04 27.50 26.21 27.54 22.07 21.45

DPM-VOC+VP [28] 42.43 31.08 28.23 30.52 23.17 21.58

Regionlets [30] 70.41 58.72 51.83 N/A N/A N/A

Faster R-CNN [7] 72.26 63.35 55.90 N/A N/A N/A

3DOP [32] 78.39 68.94 61.37 70.13 58.68 52.35

SubCNN (Ours) 74.40 61.98 54.75 63.74 52.06 45.93

Table 7. AP/AOS Comparison between different methods on the KITTI test set. More
comparisons are available at [25].
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5.3 KITTI Test Set Evaluation

To compare with the state-of-the-art methods on the KITTI detection bench-
mark, we train our RPN and detection network with all the KITTI training
data, and then test our method on the KITTI test set by submitting our re-
sults to [25]. Table 7 presents the detection and orientation estimation results
on the three categories, where we compare our method (SubCNN) with different
methods evaluated on KITTI. Our method ranks on top among all the published
methods. The experimental results demonstrate the ability of our CNNs in using
subcategory information for detection and orientation estimation. We note that
the very recent work 3DOP [32] achieves competitive performance on KITTI.
However, 3DOP uses stereo image pairs as input, while our method only needs
a monocular image as input. Fig. 4 presents some examples of our detection and
3D localization results on KITTI.

5.4 Evaluation on PASCAL3D+ and PASCAL VOC 2007

Methods aeroplanebicycle boat bottle bus car chair diningtablemotorbike sofa train tvmonitor Average

Object Detection (AP)

DPM [12] 42.2 49.6 6.0 20.0 54.1 38.3 15.0 9.0 33.1 18.9 36.4 33.2 29.6

R-CNN [5] 72.4 68.7 34.0 – 73.0 62.3 33.0 35.2 70.7 49.6 70.1 57.2 56.9

Ours w/o Extra 76.3 73.4 43.4 44.7 74.5 63.3 35.4 32.4 74.9 51.9 74.1 60.9 58.8

Ours Full 76.5 74.0 42.4 47.0 74.564.7 38.5 38.6 76.7 55.1 74.8 65.3 60.7

Joint Object Detection and Pose Estimation (4 Views AVP)

VDPM [15] 34.6 41.7 1.5 – 26.1 20.2 6.8 3.1 30.4 5.1 10.7 34.7 19.5

DPM-VOC+VP [28] 39.4 43.9 0.3 – 49.1 37.6 6.1 3.0 32.2 11.8 12.5 33.2 24.5

Ours w/o Extra 62.3 56.6 18.0 – 62.0 40.9 19.3 14.9 62.3 44.1 58.1 58.5 45.2

Ours Full 61.4 60.4 21.1 – 63.048.7 23.8 17.4 60.7 47.8 55.9 62.3 47.5

Joint Object Detection and Pose Estimation (8 Views AVP)

VDPM [15] 23.4 36.5 1.0 – 35.5 23.5 5.8 3.6 25.1 12.5 10.9 27.4 18.7

DPM-VOC+VP [28] 29.7 42.6 0.4 – 39.5 36.8 9.4 2.6 32.9 11.0 10.3 28.6 22.2

Ours w/o Extra 45.9 25.5 11.1 – 37.7 34.6 15.2 7.4 37.1 33.0 42.5 24.3 28.6

Ours Full 48.8 36.3 16.4 – 39.837.2 19.1 13.2 37.0 32.1 44.4 26.9 31.9

Joint Object Detection and Pose Estimation (16 Views AVP)

VDPM [15] 15.4 18.4 0.5 – 46.9 18.1 6.0 2.2 16.1 10.0 22.1 16.3 15.6

DPM-VOC+VP [28] 17.0 24.7 1.0 – 49.0 30.1 6.6 3.0 17.2 7.7 20.4 20.2 17.9

Ours w/o Extra 23.3 19.2 8.4 – 52.6 27.0 9.9 5.1 23.6 20.9 27.4 27.9 22.3

Ours Full 28.0 23.7 10.7 – 50.8 31.4 14.3 9.4 23.4 19.5 30.7 27.8 24.5

Joint Object Detection and Pose Estimation (24 Views AVP)

VDPM [15] 8.0 14.3 0.3 – 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1

DPM-VOC+VP [28] 10.6 16.7 2.2 – 43.525.4 4.4 2.3 11.3 4.9 22.4 14.4 14.4

Ours w/o Extra 18.9 10.5 6.7 – 34.3 23.3 8.3 6.5 20.6 17.5 33.8 17.0 17.9

Ours Full 20.7 16.4 7.9 – 34.6 24.6 9.4 7.6 19.9 20.0 32.7 18.2 19.3

Table 8. AP/AVP Comparison between different methods on PASCAL3D+.

We also evaluate our detection framework on the 12 categories in PAS-
CAL3D+. Table 8 presents the detection results in AP and the joint detection
and pose estimation results in AVP. After generating region proposals from our
RPN, we experiment with our detection networks with and without feature ex-
trapolation. First, in terms of detection, our method improves over R-CNN [5]
on all 12 categories. Second, in terms of join detection and pose estimation, our
method significantly outperforms two state-of-the-art methods: VDPM [15] and
DPM-VOC+VP [28]. Third, feature extrapolation helps both detection and pose
estimation on PASCAL3D+. It is worth mentioning that PASCAL3D+ has much
fewer training examples in each subcategory compared to KITTI (Table 1 vs.
Table 2). Our pose estimation performance is limited by the number of training
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examples available in PASCAL3D+. We also note that the two recent methods
[35,36] achieve very appealing pose estimation results on PASCAL3D+. How-
ever, both of them utilize additional training images (ImageNet images in [35]
and synthetic images in [36]) and conduct detection and pose estimation with
separate CNNs, where a CNN is specifically designed for pose estimation. Our
method is capable of simultaneous object detection and viewpoint estimation
even in the presence of limited training examples per viewpoint. Fig. 4 shows
some detection results from our method. We again transfer segmentation masks
of 3DVPs to the detected objects according to the subcategory classification
results. Please see supplementary material for more examples.

To demonstrate that our method also works on datasets with bounding box
annotations only, we have conducted experiments on the PASCAL VOC 2007
dataset, where subcategories are obtained by clustering on image features. In
table 9, we compare with Fast R-CNN [6] and Faster R-CNN [7]. As we can see
from the table, we have achieved comparable performance to the state-of-the-
arts. Region proposal on PASCAL VOC is relatively easy compared to KITTI.
So we do not see much improvement with our RPN on PASCAL VOC 2007.

mAP aero bike bird boat bottle bus car cat chair cow table dog horsembikepersonplant sheep sofa train tv

[6] 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8
[7] 69.9 70.0 80.670.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6
Ours 68.5 70.2 80.5 69.5 60.3 47.0 79.0 78.7 84.2 48.5 73.9 63.0 82.7 80.6 76.0 70.2 38.2 62.4 67.7 77.7 60.5

Table 9. AP comparison between Fast R-CNN [6], Faster R-CNN [7] and our method
on PASCAL VOC 2007 dataset.

KI
TT

I
PA

SC
A
L3
D
+

Fig. 4. Examples of detections from our method. Detections with score larger than 0.5
on KITTI and 0.7 on PASCAL3D+ are shown.

6 Conclusion

In this work, we explore how subcategory information can be exploited in CNN-
based object detection. We have proposed a novel region proposal network, and
a novel object detection network, where we explicitly employ subcategory infor-
mation to improve region proposal generation, object detection and object pose
estimation. Our subcategory-aware CNNs can also handle the scale variation of
objects using image pyramids in an efficient way. We have conducted extensive
experiments on the KITTI detection benchmark, the PASCAL3D+ dataset and
PASCAL VOC 2007 dataset. Our method achieves the state-of-the-art results
on these benchmarks.
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